2025
Evaluating the immunogenicity of a mouse partial hindlimb for composite allotransplantation
Sun J, Ligi S, Biniazan F, Haykal S. Evaluating the immunogenicity of a mouse partial hindlimb for composite allotransplantation. Frontiers In Immunology 2025, 16: 1595319. DOI: 10.3389/fimmu.2025.1595319.Peer-Reviewed Original ResearchPost-operative day 7CD8+ T cellsTr1 cellsVascularized Composite AllotransplantationAcute rejectionT cellsAllogeneic skinImmune responseTransplantation modelIncreased CD8+ T cellsImproving long-term graft survivalRecipient-derived T cellsFlow cytometryLong-term graft survivalPhenotype of infiltrating cellsImmune response complexityTolerance induction strategiesIncreased risk of infectionImmune cell populationsT cell presenceTUNEL-positive cellsInvestigate immune responsesSevere tissue traumaImmunosuppressive approachesSubclinical rejectionThe efficacy of METTL3 inhibition in pre-clinical models of MDS and AML.
Kenworthy C, Wei M, VanOudenhove J, Busarello E, Ramirez Amarilla C, Paul S, Cruz J, Baassiri A, Maul-Newby H, Biancon G, Tebaldi T, Halene S. The efficacy of METTL3 inhibition in pre-clinical models of MDS and AML. Journal Of Clinical Oncology 2025, 43 DOI: 10.1200/jco.2025.43.16_suppl.e18584.Peer-Reviewed Original ResearchAcute myeloid leukemiaMyelodysplastic syndromeInnate immune responseImmune signaturesTransplantation modelModel of myelodysplastic syndromeMurine models of leukemiaPreclinical anti-tumour efficacyImmune responseInnate immune cell subsetsSolid tumor clinical trialsSplicing factorsCompetitive transplant modelImmune checkpoint inhibitionMouse solid tumor modelsDouble-stranded RNAMyelodysplastic syndrome patientsInnate immune signaturesAnti-tumor efficacyImmune cell subsetsMyelodysplastic syndromes pathogenesisDriver genesSolid tumor modelsPre-clinical modelsModels of leukemiaHuman Type 1 Conventional Dendritic Cells Contribute to Skin Transplant Rejection
Borges T, Lee C, Mucciarone K, Lima K, Lape I, Lima-Filho M, Ayoama B, Kollar B, Gassen R, Bonorino C, Talbot S, Pomahac B, Lian C, Murphy G, Riella L. Human Type 1 Conventional Dendritic Cells Contribute to Skin Transplant Rejection. American Journal Of Transplantation 2025 PMID: 40286910, DOI: 10.1016/j.ajt.2025.04.016.Peer-Reviewed Original ResearchType 1 conventional dendritic cellsHuman skin allograftsDendritic cellsSkin allograftsT cellsDecreased HLA-DR expressionIncreased regulatory T cellsMurine skin transplantationSkin transplant rejectionHLA-DR expressionRegulatory T cellsAllogeneic T cellsHuman skin graftsHumanized transplantation modelUpper extremity transplant recipientsInduce immune modulationImmunogenic tissueTransplant recipientsTransplantation modelTransplant rejectionCDC1 subsetImmune modulationCDC1sSkin transplantationSkin grafts
2024
Development of a large animal orthotopic intestinal transplantation model with long-term survival for study of immunologic outcomes
Merl S, Chen B, Gunes M, Atta H, Yang K, Ekanayake-Alper D, Hajosi D, Huang F, Bhola B, Patwardhan S, Jordache P, Nowak G, Martinez M, Kato T, Sykes M, Yamada K, Weiner J. Development of a large animal orthotopic intestinal transplantation model with long-term survival for study of immunologic outcomes. Frontiers In Transplantation 2024, 3: 1367486. PMID: 38993771, PMCID: PMC11235311, DOI: 10.3389/frtra.2024.1367486.Peer-Reviewed Original ResearchLong-term survivalAnimal modelsPostoperative management strategiesRate of rejectionInduction regimensImmunosuppressive strategiesParenteral nutritionImmunological complicationsIntestinal failureGraft functionClinical regimenImmunological outcomesPre-clinical trialsSurgical methodsIntestinal transplantationTransplantation modelFluid managementBowel positionVessel preparationITxImmunosuppressionSurvivalComplicationsImmunological analysisOutcomesImpact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques
Lee B, Gin A, Wu C, Singh K, Grice M, Mortlock R, Abraham D, Fan X, Zhou Y, AlJanahi A, Choi U, DeRavin S, Shin T, Hong S, Dunbar C. Impact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques. Cell Stem Cell 2024, 31: 455-466.e4. PMID: 38508195, PMCID: PMC10997443, DOI: 10.1016/j.stem.2024.02.010.Peer-Reviewed Original ResearchLentiviral vectorsRhesus macaquesGFP-expressing lentiviral vectorsClonal dynamicsLong-term engrafting hematopoietic stem cellsLong-term engraftmentHematopoietic stem cellsAutologous transplantation modelClinically relevant differencesLT-HSCLT-HSCsCells long-termTransplantation modelLentiviral transductionP53 inhibitionAnimal modelsStem cellsGenetic modification approachesRelevant differencesClonalityHSCCellsMacaquesEngraftmentCD33Advancing mouse models for transplantation research
Cravedi P, Riella L, Ford M, Valujskikh A, Menon M, Kirk A, Alegre M, Alessandrini A, Feng S, Kehn P, Najafian N, Hancock W, Heeger P, Maltzman J, Mannon R, Nadig S, Odim J, Turnquist H, Shaw J, West L, Luo X, Chong A, Bromberg J, group A. Advancing mouse models for transplantation research. American Journal Of Transplantation 2024, 24: 1362-1368. PMID: 38219866, DOI: 10.1016/j.ajt.2024.01.006.Peer-Reviewed Original ResearchMouse modelMechanisms of transplant rejectionTranslation to clinical trialsFood and Drug Administration-approved drugsMouse transplantation modelEffective clinical therapiesAdvanced mouse modelsTranslation of experimental findingsClinical outcomesTransplantation modelTransplant rejectionClinical trialsMouse studiesClinical therapyTransplantationClinical researchPhysician-scientistsGenetic variabilityTherapyStatistical power analysis
2023
Tissue-resident memory T cell maintenance during antigen persistence requires both cognate antigen and interleukin-15
Tieu R, Zeng Q, Zhao D, Zhang G, Feizi N, Manandhar P, Williams A, Popp B, Wood-Trageser M, Demetris A, Tso J, Johnson A, Kane L, Abou-Daya K, Shlomchik W, Oberbarnscheidt M, Lakkis F. Tissue-resident memory T cell maintenance during antigen persistence requires both cognate antigen and interleukin-15. Science Immunology 2023, 8: eadd8454. PMID: 37083450, PMCID: PMC10334460, DOI: 10.1126/sciimmunol.add8454.Peer-Reviewed Original ResearchConceptsAntigen persistenceIL-15Dendritic cellsT cellsAntigen presentationGraft-infiltrating dendritic cellsTissue-resident memory TCognate antigenAbsence of cognate antigenIL-15 transpresentationMemory T cell maintenanceT cell maintenanceChronic transplant rejectionKidney transplant modelIL-15 receptorAcute infection modelMemory TReceptor blockadeChronic rejectionTransplantation modelTransplant rejectionAcute infectionInterleukin-15Allograft pathologySterilizing immunity
2022
T cell-attracting CCL18 chemokine is a dominant rejection signal during limb transplantation
Borges T, Abarzua P, Gassen R, Kollar B, Lima-Filho M, Aoyama B, Gluhova D, Clark R, Islam S, Pomahac B, Murphy G, Lian C, Talbot S, Riella L. T cell-attracting CCL18 chemokine is a dominant rejection signal during limb transplantation. Cell Reports Medicine 2022, 3: 100559. PMID: 35492875, PMCID: PMC9040185, DOI: 10.1016/j.xcrm.2022.100559.Peer-Reviewed Original ResearchConceptsLimb transplantationTransplant recipientsSkin antigen-presenting cellsSolid organ transplant recipientsAccelerated graft rejectionOrgan transplant recipientsSkin transplantation modelAntigen-presenting cellsLife-changing procedureImmunosuppressive approachesTh17 cellsGraft rejectionGreater immunogenicityCell infiltrationSkin biopsiesTransplantation modelSkin xenograftsChemokine CCL18Immune moleculesTransplantationCCL18RecipientsMolecular characterizationChemokinesCCR8 receptor
2020
Formation and function of resident memory t cells in renal allografts
Daya K, Zhao D, Tieu R, Rammal R, Oberbarnscheidt M, Lakkis F. Formation and function of resident memory t cells in renal allografts. The Journal Of Immunology 2020, 204: 161.24-161.24. DOI: 10.4049/jimmunol.204.supp.161.24.Peer-Reviewed Original ResearchOT-IT cellsEndogenous T-cell populationMouse kidney transplant modelOT-I T cellsResident memory T cellsMemory T cellsT cell populationsPreserved kidney functionKidney transplant modelTRM cellsAdoptive transferB6 recipientsTeff cellsChronic rejectionKidney allograftsRe-transplantationRenal allograftsNo significant differenceGraft histologyKidney graftsTransplantation modelBone marrowALLO groupKidney functionCXCR4 or CXCR7 antagonists treat endometriosis by reducing bone marrow cell trafficking
Pluchino N, Mamillapalli R, Shaikh S, Habata S, Tal A, Gaye M, Taylor HS. CXCR4 or CXCR7 antagonists treat endometriosis by reducing bone marrow cell trafficking. Journal Of Cellular And Molecular Medicine 2020, 24: 2464-2474. PMID: 31904910, PMCID: PMC7028867, DOI: 10.1111/jcmm.14933.Peer-Reviewed Original ResearchConceptsCXCR7 antagonistLesion sizePro-inflammatory cytokine productionBone marrow-derived cellsNon-hormonal therapiesMouse bone marrow transplantation modelBone marrow transplantation modelBone marrow cell migrationMarrow-derived cellsProgression of endometriosisEndometriosis implantsEndometrial effectsAntagonist treatmentEndometriotic lesionsCytokine productionEndometrial physiologyStem cell recruitmentEutopic endometriumTransplantation modelCell recruitmentNull miceCell traffickingEndometriosisEpithelial cell fateCXCR4
2019
Cross-dressed dendritic cells sustain effector T cell responses in islet and kidney allografts
Hughes A, Zhao D, Dai H, Abou-Daya K, Tieu R, Rammal R, Williams A, Landsittel D, Shlomchik W, Morelli A, Oberbarnscheidt M, Lakkis F. Cross-dressed dendritic cells sustain effector T cell responses in islet and kidney allografts. Journal Of Clinical Investigation 2019, 130: 287-294. PMID: 31763998, PMCID: PMC6934226, DOI: 10.1172/jci125773.Peer-Reviewed Original ResearchConceptsHost DCT cell responsesDonor antigensT cellsMHC-peptide complexesActivation of host T cellsAlloantigens to T cellsEffector T cell responsesCD8+ T cellsDonor MHC moleculesHost T cellsDifferentiation to effectorKidney transplant modelSecondary lymphoid organsSelf-MHC moleculesAntigen presentation pathwayAcute rejectionAllograft rejectionDendritic cellsIndirect presentationTransplantation modelAntigen presentationLymphoid organsPresentation pathwayIntravital microscopy
2018
Characterization of cell fusion in an experimental mouse model of endometriosis†
Tal A, Tal R, Shaikh S, Gidicsin S, Mamillapalli R, Taylor H. Characterization of cell fusion in an experimental mouse model of endometriosis†. Biology Of Reproduction 2018, 100: 390-397. PMID: 30304517, PMCID: PMC7302516, DOI: 10.1093/biolre/ioy221.Peer-Reviewed Original ResearchConceptsMouse modelLimited proliferative activityFunctional endometrial tissueBone marrow transplantation modelExperimental mouse modelEndometrial stem cellsPrincipal cell sourceRepair/regeneration processBone marrow cellsEndometriosis shareCell fusionEndometrial tissueEndometriosis lesionsEndometriotic lesionsUterine cavityTransplantation modelCell fusion eventsCre-lox systemEndometriosisEpithelial markersStromal compartmentLesionsMarrow cellsProliferative activitySca-1Donor tissue-specific exosome profiling enables noninvasive monitoring of acute rejection in mouse allogeneic heart transplantation
Habertheuer A, Korutla L, Rostami S, Reddy S, Lal P, Naji A, Vallabhajosyula P. Donor tissue-specific exosome profiling enables noninvasive monitoring of acute rejection in mouse allogeneic heart transplantation. Journal Of Thoracic And Cardiovascular Surgery 2018, 155: 2479-2489. PMID: 29499866, DOI: 10.1016/j.jtcvs.2017.12.125.Peer-Reviewed Original ResearchConceptsEarly acute rejectionDonor heartsAcute rejectionHeart transplantationStudy armsImmunologic rejectionMaintenance armHeterotopic heart transplantation modelAllogeneic heart transplantationTime pointsHeart transplantation modelHeterotopic heart transplantationAbsence of rejectionNovel biomarker platformDevelopment of biomarkersNoninvasive monitoringTransplant heartCardiac allograftsImmunocompetent recipientsAllograft monitoringImmunodeficient recipientsRecipient circulationTransplantation modelDay 1Total plasma
2016
The Critical Role of SENP1‐Mediated GATA2 DeSUMOylation in Graft Arteriosclerosis by Promoting Endothelial Activation
Qiu C, Wang Y, Zhu X, Song L, Zhang H, Qin L, Tellides G, Min W, Yu L. The Critical Role of SENP1‐Mediated GATA2 DeSUMOylation in Graft Arteriosclerosis by Promoting Endothelial Activation. The FASEB Journal 2016, 30 DOI: 10.1096/fasebj.30.1_supplement.165.3.Peer-Reviewed Original ResearchGraft arteriosclerosisEndothelial adhesion moleculesEC activationEndothelial activationAdhesion moleculesGA progressionNeointima formationClinical graft rejectionAorta transplantation modelEndothelial cell activationLeukocyte-endothelial adhesionConditional knockout miceDeficient graftsGraft failureGraft rejectionVasomotor dysfunctionEndothelial overexpressionEndothelial inflammationAllograft transplantationVascular occlusionEC dysfunctionTransplantation modelLeukocyte recruitmentVascular remodelingKnockout mice
2013
Molecular Signatures of Tissue-Specific Microvascular Endothelial Cell Heterogeneity in Organ Maintenance and Regeneration
Nolan D, Ginsberg M, Israely E, Palikuqi B, Poulos M, James D, Ding B, Schachterle W, Liu Y, Rosenwaks Z, Butler J, Xiang J, Rafii A, Shido K, Rabbany S, Elemento O, Rafii S. Molecular Signatures of Tissue-Specific Microvascular Endothelial Cell Heterogeneity in Organ Maintenance and Regeneration. Developmental Cell 2013, 26: 204-219. PMID: 23871589, PMCID: PMC3873200, DOI: 10.1016/j.devcel.2013.06.017.Peer-Reviewed Original ResearchConceptsClusters of transcription factorsTranscription factorsEndothelial cellsEmbryonic stem cellsEndothelial cell heterogeneityTransplantation modelCell heterogeneityMolecular signaturesTissue-specific endothelial cellsOrgan maintenanceFunctional attributesAdhesion moleculesMicrovascular endothelial cellsLymphatic endothelial cellsTissue regeneration modelCells
2011
AIP1 Prevents Graft Arteriosclerosis by Inhibiting Interferon-&ggr;–Dependent Smooth Muscle Cell Proliferation and Intimal Expansion
Yu L, Qin L, Zhang H, He Y, Chen H, Pober JS, Tellides G, Min W. AIP1 Prevents Graft Arteriosclerosis by Inhibiting Interferon-&ggr;–Dependent Smooth Muscle Cell Proliferation and Intimal Expansion. Circulation Research 2011, 109: 418-427. PMID: 21700930, PMCID: PMC3227522, DOI: 10.1161/circresaha.111.248245.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAorta, AbdominalAorta, ThoracicArteriosclerosisCell MovementCell ProliferationCells, CulturedDisease Models, AnimalHumansInterferon-gammaJanus Kinase 2MaleMiceMice, KnockoutMinor Histocompatibility AntigensMuscle, Smooth, Vascularras GTPase-Activating ProteinsReceptors, InterferonSignal TransductionSTAT1 Transcription FactorSTAT3 Transcription FactorTime FactorsTunica IntimaVascular GraftingConceptsASK1-interacting protein-1Neointima formationTransplantation modelIntimal expansionSingle minor histocompatibility antigenSmooth muscle cell proliferationMinor histocompatibility antigensAortic transplantation modelAorta transplantation modelMuscle cell proliferationVSMC accumulationDonor graftsGraft arteriosclerosisIntimal formationIntravenous administrationHistocompatibility antigensVSMC proliferationMouse aortaVSMC migrationIFNProliferative diseasesEndothelial cellsProtein 1Cell proliferationJAK-STAT signalingAbrogation of donor T-cell IL-21 signaling leads to tissue-specific modulation of immunity and separation of GVHD from GVL
Hanash A, Kappel L, Yim N, Nejat R, Goldberg G, Smith O, Rao U, Dykstra L, Na I, Holland A, Dudakov J, Liu C, Murphy G, Leonard W, Heller G, van den Brink M. Abrogation of donor T-cell IL-21 signaling leads to tissue-specific modulation of immunity and separation of GVHD from GVL. Blood 2011, 118: 446-455. PMID: 21596854, PMCID: PMC3138694, DOI: 10.1182/blood-2010-07-294785.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsGene Knockdown TechniquesGraft vs Host DiseaseGraft vs Leukemia EffectHumansImmunity, InnateInterleukin-21 Receptor alpha SubunitInterleukinsLymphocytes, Tumor-InfiltratingMiceMice, Inbred BALB CMice, Inbred C57BLMice, Inbred DBAMice, KnockoutOrgan SpecificitySignal TransductionT-LymphocytesTissue DonorsTransplantation ImmunologyConceptsSeparation of GVHDDonor T cellsKO T cellsIL-21T cellsTissue-specific modulationGastrointestinal GVHDCytokine productionWild-type donor T cellsDonor regulatory T cellsTh cell cytokine productionPeripheral T cell functionMesenteric lymph nodesRegulatory T cellsTh cell functionIL-21 signalingInflammatory cytokine productionBM transplantation modelT cell functionLymphoma responseLymph nodesProinflammatory cytokinesTransplantation outcomesTransplantation modelGVHD
2009
A CD8 T cell–intrinsic role for the calcineurin-NFAT pathway for tolerance induction in vivo
Fehr T, Lucas CL, Kurtz J, Onoe T, Zhao G, Hogan T, Vallot C, Rao A, Sykes M. A CD8 T cell–intrinsic role for the calcineurin-NFAT pathway for tolerance induction in vivo. Blood 2009, 115: 1280-1287. PMID: 20007805, PMCID: PMC2826238, DOI: 10.1182/blood-2009-07-230680.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, MonoclonalApoptosis Regulatory ProteinsBone Marrow TransplantationCalcineurinCD4-Positive T-LymphocytesCD40 LigandCD8-Positive T-LymphocytesCyclosporineFemaleFlow CytometryGraft SurvivalImmune ToleranceMiceMice, Inbred C57BLMice, TransgenicNFATC Transcription FactorsReceptors, Antigen, T-CellSignal TransductionThymectomyTransplantation ChimeraConceptsCD8 T cellsCalcineurin/NFAT pathwayTolerance inductionCD8 toleranceT cell receptorCD4 cellsT cellsAllogeneic bone marrow transplantation modelNFAT pathwayT cell-intrinsic roleAnti-CD154 antibodyFailure of CD8Adoptive transfer studiesBone marrow transplantation modelBone marrow transplantationCell-intrinsic roleCalcineurin-NFAT pathwayCD8 cellsRegulatory cellsTransplantation toleranceMarrow transplantationTransplantation modelAnergy inductionNFAT1 deficiencyNuclear factor
2008
Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase–dependent DC functions and regulates experimental graft-versus-host disease in mice
Reddy P, Sun Y, Toubai T, Duran-Struuck R, Clouthier S, Weisiger E, Maeda Y, Tawara I, Krijanovski O, Gatza E, Liu C, Malter C, Mascagni P, Dinarello C, Ferrara J. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase–dependent DC functions and regulates experimental graft-versus-host disease in mice. Journal Of Clinical Investigation 2008, 118: 2562-2573. PMID: 18568076, PMCID: PMC2430497, DOI: 10.1172/jci34712.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDBone Marrow TransplantationCytokinesDendritic CellsEnzyme InhibitorsFemaleGene ExpressionGraft vs Host DiseaseHistone Deacetylase InhibitorsHumansHydroxamic AcidsIndoleamine-Pyrrole 2,3,-DioxygenaseLipopolysaccharidesLymphocyte ActivationMiceMice, Inbred BALB CMice, Inbred C3HMice, Inbred C57BLMice, Inbred StrainsMice, KnockoutRNA, Small InterferingSurvival AnalysisT-LymphocytesVorinostatConceptsDC functionHDAC inhibitorsSuberoylanilide hydroxamic acidHost diseaseExperimental graftBlockade of IDOPretreatment of DCsAllogeneic BM transplantationBM-derived cellsImmune-mediated diseasesExpression of CD40Expression of indoleamineBM transplantation modelExposure of DCsInduction of IDOVivo functional roleHistone deacetylase inhibitionHistone deacetylase inhibitorsMechanism of actionProinflammatory cytokinesBM transplantationWT DCsTransplantation modelImmunomodulatory functionsDeacetylase inhibition
2007
IFN-γ and Fas Ligand Are Required for Graft-versus-Tumor Activity against Renal Cell Carcinoma in the Absence of Lethal Graft-versus-Host Disease
Ramirez-Montagut T, Chow A, Kochman A, Smith O, Suh D, Sindhi H, Lu S, Borsotti C, Grubin J, Patel N, Terwey T, Kim T, Heller G, Murphy G, Liu C, Alpdogan O, van den Brink M. IFN-γ and Fas Ligand Are Required for Graft-versus-Tumor Activity against Renal Cell Carcinoma in the Absence of Lethal Graft-versus-Host Disease. The Journal Of Immunology 2007, 179: 1669-1680. PMID: 17641033, DOI: 10.4049/jimmunol.179.3.1669.Peer-Reviewed Original ResearchConceptsRenal cell carcinomaMurine renal cell carcinomaT cellsCell carcinomaGVT activityHost diseaseRenca cellsIFN-gammaTumor activityAllogeneic bone marrow transplantation modelFas ligandAbsence of graftRecipients of IFNBone marrow transplantation modelMechanism of graftMembrane-bound TNF-alphaTumor-bearing miceLethal graftLethal GVHDSevere GVHDTNF-alphaTransplantation modelTransplanted miceLytic capacitySolid tumors
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply