2024
Quantitative correlation of ENPP1 pathogenic variants with disease phenotype
Ansh A, Stabach P, Ciccone C, Cao W, De La Cruz E, Sabbagh Y, Carpenter T, Ferreira C, Braddock D. Quantitative correlation of ENPP1 pathogenic variants with disease phenotype. Bone 2024, 186: 117136. PMID: 38806089, PMCID: PMC11227391, DOI: 10.1016/j.bone.2024.117136.Peer-Reviewed Original ResearchEctonucleotide pyrophosphatase/phosphodiesterase 1Pathogenic variantsDisease phenotypeEnzyme velocityCompound heterozygotesEnzyme activityVariable enzyme activityAutosomal dominant phenotypeHigh-throughput assayAutosomal recessive formInnate immune responseENPP1 variantsDamaging variantsENPP1 deficiencyCole diseaseDominant phenotypeAutosomal dominant diseaseCatalytic velocityRecessive formEnzymePhenotypeWT levelsBio-active moleculesClinical phenotypeDominant disease
2019
De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes
Watkins WS, Hernandez EJ, Wesolowski S, Bisgrove BW, Sunderland RT, Lin E, Lemmon G, Demarest BL, Miller TA, Bernstein D, Brueckner M, Chung WK, Gelb BD, Goldmuntz E, Newburger JW, Seidman CE, Shen Y, Yost HJ, Yandell M, Tristani-Firouzi M. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. Nature Communications 2019, 10: 4722. PMID: 31624253, PMCID: PMC6797711, DOI: 10.1038/s41467-019-12582-y.Peer-Reviewed Original ResearchConceptsChromatin-modifying genesCilia-related genesGene classesDe novo variantsDistinct gene functionsDamaging de novo variantsBackground mutation rateGene burden analysisNovo variantsGene functionGenetic architectureRecessive formPediatric Cardiac Genomics ConsortiumSporadic congenital heart diseaseMode of inheritancePhenotypic landscapeGene pathwaysDisease genesGenomics ConsortiumMutation rateGenesRecessive genotypeDe novoCompound heterozygous genotypeDe novo forms
2018
Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration
Schaffer AE, Breuss MW, Caglayan AO, Al-Sanaa N, Al-Abdulwahed HY, Kaymakçalan H, Yılmaz C, Zaki MS, Rosti RO, Copeland B, Baek ST, Musaev D, Scott EC, Ben-Omran T, Kariminejad A, Kayserili H, Mojahedi F, Kara M, Cai N, Silhavy JL, Elsharif S, Fenercioglu E, Barshop BA, Kara B, Wang R, Stanley V, James KN, Nachnani R, Kalur A, Megahed H, Incecik F, Danda S, Alanay Y, Faqeih E, Melikishvili G, Mansour L, Miller I, Sukhudyan B, Chelly J, Dobyns WB, Bilguvar K, Jamra RA, Gunel M, Gleeson JG. Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration. Nature Genetics 2018, 50: 1093-1101. PMID: 30013181, PMCID: PMC6072555, DOI: 10.1038/s41588-018-0166-0.Peer-Reviewed Original ResearchConceptsNeuronal migrationHuman cerebral cortexCortical neuronal migrationΒ-catenin signalingCerebral cortexPotential disease mechanismsDevelopmental brain defectsBiallelic truncating mutationsNeuronal phenotypeBiallelic lossBrain defectsBiallelic mutationsTruncating mutationsDisease mechanismsΒ-cateninPachygyriaRecessive formNeurite stabilityNeuronsFamily membersCTNNA2OveractivityPatients
2016
Biallelic Mutations in TMTC3, Encoding a Transmembrane and TPR-Containing Protein, Lead to Cobblestone Lissencephaly
Jerber J, Zaki MS, Al-Aama JY, Rosti RO, Ben-Omran T, Dikoglu E, Silhavy JL, Caglar C, Musaev D, Albrecht B, Campbell KP, Willer T, Almuriekhi M, Çağlayan A, Vajsar J, Bilgüvar K, Ogur G, Jamra R, Günel M, Gleeson JG. Biallelic Mutations in TMTC3, Encoding a Transmembrane and TPR-Containing Protein, Lead to Cobblestone Lissencephaly. American Journal Of Human Genetics 2016, 99: 1181-1189. PMID: 27773428, PMCID: PMC5097947, DOI: 10.1016/j.ajhg.2016.09.007.Peer-Reviewed Original ResearchConceptsCongenital muscular dystrophyCobblestone lissencephalyOvermigration of neuronsBiallelic mutationsMuscular dystrophyTMTC3Affected individualsWalker-Warburg syndromeMembrane componentsSevere brain malformationsBasement membrane componentsFukuyama congenital muscular dystrophyMuscle creatine phosphokinaseEye defectsMutationsGenesRecessive formGenetic disordersGlial cellsMinimal eyeMuscle involvementCortical dysplasiaBrain malformationsEye anomaliesCreatine phosphokinase
2013
Novel mutations in the CLCN1 gene of myotonia congenita: 2 case reports.
Lakraj AA, Miller G, Vortmeyer AO, Khokhar B, Nowak RJ, DiCapua DB. Novel mutations in the CLCN1 gene of myotonia congenita: 2 case reports. The Yale Journal Of Biology And Medicine 2013, 86: 101-6. PMID: 23483815, PMCID: PMC3584487.Peer-Reviewed Original ResearchConceptsMyotonia congenitaClinical presentationPatient 1Salient clinical featuresCLCN1 geneSarcolemmal chloride conductanceClinical featuresPatient 2Muscle relaxationMuscle biopsyElectrical myotoniaGenetic testingCLCN1 mutationsCongenitaCommon typeNovel mutationsPatientsChloride conductanceRecessive formUnidentified mutationsMyotoniaGene sequencingPresentationMutationsBiopsy
2010
Cholangiocyte Biology as Relevant to Cystic Liver Diseases
Lecchi S, Fabris L, Spirli C, Cadamuro M, Fiorotto R, Strazzabosco M. Cholangiocyte Biology as Relevant to Cystic Liver Diseases. Clinical Gastroenterology 2010, 23-43. DOI: 10.1007/978-1-60327-524-8_2.ChaptersLiver cystsLiver diseaseSevere life-threatening complicationsIntrahepatic bile duct epitheliumComplex intercellular signalingCystic liver diseaseProgressive cyst growthLife-threatening complicationsEpithelial cellsBile duct epitheliumIntrahepatic biliary treePolycystic liver diseaseExcessive fluid secretionRenal tubule epitheliumRecessive formExtracellular matrix remodelingBiliary treeBiliary epitheliumCystic diseaseDuct epitheliumCyst expansionCyst growthAutocrine mechanismTubule epitheliumHereditary disorder
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply