2025
Post-discharge nutrition to optimize preterm infant short- and long-term outcomes
Taylor S, Buck C. Post-discharge nutrition to optimize preterm infant short- and long-term outcomes. Seminars In Fetal And Neonatal Medicine 2025, 30: 101637. PMID: 40246652, DOI: 10.1016/j.siny.2025.101637.Peer-Reviewed Original ResearchConceptsPost-discharge nutritionLong-term outcomesPreterm infantsDegree of preterm birthVery preterm infantsMaternal milk feedingInfant growth patternsHealthy growth patternsDevelopment of obesityInfant short-Preterm birthFetal nutritionClinical trialsNutritional deficitsBody compositionLong-term healthMilk feedingDeliver individualized careGrowth patternPost-hospital dischargeSupplemental nutritionNutritional supplementsPretermInfantsNeurodevelopmental difficulties
2023
Extracellular macrophage migration inhibitory factor (MIF) downregulates adipose hormone-sensitive lipase (HSL) and contributes to obesity
Chen L, Li L, Cui D, Huang Y, Tong H, Zabihi H, Wang S, Qi Y, Lakowski T, Leng L, Liu S, Wu H, Young L, Bucala R, Qi D. Extracellular macrophage migration inhibitory factor (MIF) downregulates adipose hormone-sensitive lipase (HSL) and contributes to obesity. Molecular Metabolism 2023, 79: 101834. PMID: 37935315, PMCID: PMC10700858, DOI: 10.1016/j.molmet.2023.101834.Peer-Reviewed Original ResearchMacrophage migration inhibitory factorExtracellular MIFHigh-fat dietHormone-sensitive lipaseDevelopment of obesityMigration inhibitory factorInhibitory factorRole of cytokinesExtracellular actionJNK phosphorylationMIF levelsSevere obesityHFD miceHFD feedingMIF antibodyWT miceAdipocyte hypertrophyCOP9 signalosome subunit 5Fat dietHSL expressionObesityAutocrine fashionHSL activationSensitive lipaseInhibitory action
2022
Adipose Tissue Insulin Resistance Is Not Associated With Changes in the Degree of Obesity in Children and Adolescents
Halloun R, Galderisi A, Caprio S, Weiss R. Adipose Tissue Insulin Resistance Is Not Associated With Changes in the Degree of Obesity in Children and Adolescents. The Journal Of Clinical Endocrinology & Metabolism 2022, 108: 1053-1060. PMID: 36469736, PMCID: PMC10306082, DOI: 10.1210/clinem/dgac700.Peer-Reviewed Original ResearchConceptsAdipose tissue insulin resistanceDegree of obesityTissue insulin resistanceWhole-body insulin sensitivityTissue insulin sensitivityInsulin resistanceInsulin sensitivityMultivariate analysisSecondary analysisBody mass index z-scorePediatric weight management clinicOral glucose tolerance testInsulin sensitivity/resistanceSkeletal muscle insulin resistanceFree fatty acid concentrationsWeight management clinicGlucose tolerance testMain outcome measuresDevelopment of obesityIndex z-scoreCarbohydrate-insulin modelMuscle insulin resistanceSensitivity/resistanceManagement clinicTolerance testLack of Evidence for a Causal Role of Hyperinsulinemia in the Progression of Obesity in Children and Adolescents: A Longitudinal Study.
Halloun R, Galderisi A, Caprio S, Weiss R. Lack of Evidence for a Causal Role of Hyperinsulinemia in the Progression of Obesity in Children and Adolescents: A Longitudinal Study. Diabetes Care 2022, 45: 1400-1407. PMID: 35235641, PMCID: PMC9210872, DOI: 10.2337/dc21-2210.Peer-Reviewed Original ResearchConceptsDegree of obesityOral glucose tolerance testCarbohydrate-insulin modelLower postprandial glucosePostprandial glucoseInsulin secretionMultivariate analysisPostprandial glucose levelsPediatric obesity clinicProgression of obesityGlucose tolerance testCurve of insulinDevelopment of obesityGreater insulin secretionGreater increaseLack of evidenceInsulinogenic indexObesity clinicLower BMIObesity managementTolerance testGlucose levelsPeak insulinHyperinsulinemiaObesity
2021
Colonic Fermentation and Acetate Production in Youth with and without Obesity
Galuppo B, Cline G, Van Name M, Shabanova V, Wagner D, Kien CL, Santoro N. Colonic Fermentation and Acetate Production in Youth with and without Obesity. Journal Of Nutrition 2021, 151: 3292-3298. PMID: 34494088, PMCID: PMC8562084, DOI: 10.1093/jn/nxab277.Peer-Reviewed Original ResearchConceptsDe novo lipogenesisLean youthLactulose ingestionGut microbiotaHepatic de novo lipogenesisDevelopment of obesityColonic acetateOral doseIntravenous infusionPeripheral circulationColonic fermentationNovo lipogenesisObesityRate of appearanceAge 15Spearman correlationIngestionLactuloseRegression modelsMicrobiotaLesser degreeComplicationsGroupInfusionFerment carbohydrates197-LB: The Regulation of HSL by Macrophage Migration Inhibitory Factor (MIF) Contributes to Adipocyte Hypertrophy and Development of Obesity
CHEN L, HUANG Y, LI L, ZABIHI H, QI Y, LENG L, SUN G, BUCALA R, QI D. 197-LB: The Regulation of HSL by Macrophage Migration Inhibitory Factor (MIF) Contributes to Adipocyte Hypertrophy and Development of Obesity. Diabetes 2021, 70 DOI: 10.2337/db21-197-lb.Peer-Reviewed Original Research
2020
Uncovering the Specific Functions of miR-33 in Regulation of Feeding and Cardiometabolic Diseases Linked to Aging
Price N, Zhang X, Fernandez-Tussy P, de Cabo R, Fernandez-Hernando C. Uncovering the Specific Functions of miR-33 in Regulation of Feeding and Cardiometabolic Diseases Linked to Aging. Innovation In Aging 2020, 4: 128-128. PMCID: PMC7741365, DOI: 10.1093/geroni/igaa057.421.Peer-Reviewed Original ResearchMiR-33Cardiometabolic diseasesMetabolic dysfunctionHigh fat diet fed miceFat Diet-Fed MiceMetabolic tissuesDiet fed miceDevelopment of obesityMacrophage cholesterol effluxDevelopment of atherosclerosisRegulation of feedingCholesterol transporter ABCA1Unique mouse modelKey metabolic tissuesDifferent metabolic tissuesFeeding behaviorFed miceHeart diseaseInflammatory responseMouse modelRelated health issuesCholesterol effluxKnockout miceDeficient animalsAtherosclerosisRole of miR‐130b/301b cluster in macrophage polarization and obesity
Jiang S, McBride A, Luo W, Chernausek S. Role of miR‐130b/301b cluster in macrophage polarization and obesity. The FASEB Journal 2020, 34: 1-1. DOI: 10.1096/fasebj.2020.34.s1.09682.Peer-Reviewed Original ResearchDevelopment of obesityMacrophage polarizationKnockout miceMacrophage M1/M2 polarizationM1/M2 polarizationPro-inflammatory activationWhole-body energy expenditureHigh-fat dietEnergy expenditureAlternative macrophage activationWild-type miceWhite adipose tissueBody energy expenditureMacrophage activation statusBone marrow macrophagesPresent studyFat dietIL-4M2 polarizationType miceAlternative activationMacrophage activationAdipose tissueMetabolic diseasesActivation status
2019
Loss of Endothelial FTO Antagonizes Obesity-Induced Metabolic and Vascular Dysfunction
Krüger N, Biwer L, Good M, Ruddiman C, Wolpe A, DeLalio L, Murphy S, Macal E, Ragolia L, Serbulea V, Best A, Leitinger N, Harris T, Sonkusare S, Gödecke A, Isakson B. Loss of Endothelial FTO Antagonizes Obesity-Induced Metabolic and Vascular Dysfunction. Circulation Research 2019, 126: 232-242. PMID: 31801409, PMCID: PMC7007767, DOI: 10.1161/circresaha.119.315531.Peer-Reviewed Original ResearchConceptsMyogenic toneProstaglandin DResistance arteriesDeficient miceHigh-fat diet-induced glucose intoleranceDiet-induced glucose intoleranceObesity-induced hypertensionImpact of obesityPrevalence of obesityNew treatment optionsDevelopment of obesityHigh-fat dietRegulation of obesityDifferent cell typesCell typesGlucose intoleranceVascular alterationsVascular changesVascular dysfunctionControl miceInsulin resistanceTreatment optionsCardiovascular diseaseObesityArteryThe gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs
Virtue AT, McCright SJ, Wright JM, Jimenez MT, Mowel WK, Kotzin JJ, Joannas L, Basavappa MG, Spencer SP, Clark ML, Eisennagel SH, Williams A, Levy M, Manne S, Henrickson SE, Wherry EJ, Thaiss CA, Elinav E, Henao-Mejia J. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Science Translational Medicine 2019, 11 PMID: 31189717, PMCID: PMC7050429, DOI: 10.1126/scitranslmed.aav1892.Peer-Reviewed Original ResearchConceptsWhite adipose tissueDevelopment of obesityGut microbiotaInsulin resistanceWAT functionWhite adipose tissue inflammationGut microbiota-derived metabolitesAdipose tissue inflammationContext of obesityMicrobiota-derived metabolitesPotential therapeutic targetGut dysbiosisWAT inflammationTissue inflammationInsulin sensitivityTherapeutic targetAdipose tissueObesityWhite adipocytesPlasma abundanceCentral mechanismsMetabolic fitnessHost metabolismEnergy expenditureMicrobiota2039-P: Age-Related Dysfunction of Brown Adipose Progenitor Cells
GRAJA A, GOHLKE S, SARAIVA L, SCHULZ T. 2039-P: Age-Related Dysfunction of Brown Adipose Progenitor Cells. Diabetes 2019, 68 DOI: 10.2337/db19-2039-p.Peer-Reviewed Original ResearchAged stem cellsStem cellsBrown adipogenesisAdipogenic stem cellsBrown adipose tissue of miceLipid accumulation capacityObesity-prone phenotypesBrown adipogenic differentiationCell-intrinsic defectsCell cycle inhibitors p16Brown adipocyte markersStem cell clonesIsolate stem cellsBrown adipocyte formationExtracellular matrix functionDevelopment of obesityFat-derived stem cellsCell-intrinsic pathwaysInactivation of p53Induction of cellular senescenceAge-related defectsCell cycle blockageUncoupling protein 1Adipose tissue of micePrimary risk factorSpecific Disruption of Abca1 Targeting Largely Mimics the Effects of miR-33 Knockout on Macrophage Cholesterol Efflux and Atherosclerotic Plaque Development
Price NL, Rotllan N, Zhang X, Canfrán-Duque A, Nottoli T, Suarez Y, Fernández-Hernando C. Specific Disruption of Abca1 Targeting Largely Mimics the Effects of miR-33 Knockout on Macrophage Cholesterol Efflux and Atherosclerotic Plaque Development. Circulation Research 2019, 124: 874-880. PMID: 30707082, PMCID: PMC6417928, DOI: 10.1161/circresaha.118.314415.Peer-Reviewed Original ResearchConceptsMacrophage cholesterol effluxAtherosclerotic plaque formationCholesterol effluxMiR-33Proatherogenic effectsABCA1 expressionBone marrowDeficient animalsPlaque formationMiR-33-deficient miceHigh-fat diet feedingHepatic ABCA1 expressionAtherosclerotic plaque burdenFat diet feedingDevelopment of obesityNovel mouse modelAtherosclerotic plaque developmentFoam cell formationPlaque burdenDeficient miceDiet feedingMetabolic dysfunctionSpecific disruptionMouse modelKnockout mice
2018
Adipocyte OGT governs diet-induced hyperphagia and obesity
Li MD, Vera NB, Yang Y, Zhang B, Ni W, Ziso-Qejvanaj E, Ding S, Zhang K, Yin R, Wang S, Zhou X, Fang EX, Xu T, Erion DM, Yang X. Adipocyte OGT governs diet-induced hyperphagia and obesity. Nature Communications 2018, 9: 5103. PMID: 30504766, PMCID: PMC6269424, DOI: 10.1038/s41467-018-07461-x.Peer-Reviewed Original ResearchConceptsSerine/threonine residuesN-acetylglucosamine transferaseNutrient cuesThreonine residuesTranscriptional activationO-GlcNAcylationLipid desaturationIntracellular proteinsOGTHigh-fat diet-induced hyperphagiaDevelopment of obesityBaseline food intakeSignaling contributesLipid signalsCB1 signalingBrain axisChronic dysregulationFood intakeMetabolic diseasesPalatable foodPharmacological manipulationHyperphagiaObesityFat sensorSignalingFood Cues and Obesity: Overpowering Hormones and Energy Balance Regulation
Belfort-DeAguiar R, Seo D. Food Cues and Obesity: Overpowering Hormones and Energy Balance Regulation. Current Obesity Reports 2018, 7: 122-129. PMID: 29619632, PMCID: PMC5959777, DOI: 10.1007/s13679-018-0303-1.BooksConceptsEnergy balance regulationFood cuesObesity epidemicBalance regulationTreatment of obesityDevelopment of obesityPoor treatment outcomesFood cue exposureFood cue reactivityPurpose of ReviewInModern obesogenic environmentFood cue responsesObese individualsWeight managementTreatment outcomesFood intakeCue-elicited responsesPsychosocial interventionsObesityConventional treatmentObesogenic environmentCue exposurePhysiology of feedingCue reactivityHormone
2016
SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation
Price NL, Holtrup B, Kwei SL, Wabitsch M, Rodeheffer M, Bianchini L, Suárez Y, Fernández-Hernando C. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation. Molecular And Cellular Biology 2016, 36: 1180-1193. PMID: 26830228, PMCID: PMC4800797, DOI: 10.1128/mcb.00745-15.Peer-Reviewed Original ResearchConceptsWhite adipose tissueCyclin-dependent kinase 6MiR-33bSREBP-1Adipocyte differentiationReceptor-γ target genesPeroxisome proliferator-activated receptor-γ target genesDevelopment of obesityStandard mouse modelSterol regulatory element-binding protein 2Lipid droplet formationLipid droplet accumulationIntronic microRNAsHost genesTarget genesMouse modelKinase 6Adipose tissueMetabolic diseasesNovel roleImportant regulatorHuman preadipocytesDroplet accumulationVivo assessmentProtein 2
2015
Obesity: Treatment and Complications
Chaptini L, Peikin S. Obesity: Treatment and Complications. 2015, 2230-2241. DOI: 10.1002/9781118512074.ch115.ChaptersRisk factorsLow physical activity levelsDifferent gastrointestinal diseasesObstructive sleep apneaAbsence of obesityDevelopment of obesityPhysical activity levelsCross-sectional studyMajor health problemMultiple etiologic factorsReflux symptomsInfectious etiologySleep apneaEtiologic factorsAntiobesity drugsGastrointestinal diseasesFood intakePhysical activitySedentary behaviorObesityHealth problemsWeight gainActivity levelsPatientsDisease
2014
Leptin Is Associated With Exaggerated Brain Reward and Emotion Responses to Food Images in Adolescent Obesity
Jastreboff AM, Lacadie C, Seo D, Kubat J, Van Name MA, Giannini C, Savoye M, Constable RT, Sherwin RS, Caprio S, Sinha R. Leptin Is Associated With Exaggerated Brain Reward and Emotion Responses to Food Images in Adolescent Obesity. Diabetes Care 2014, 37: 3061-3068. PMID: 25139883, PMCID: PMC4207200, DOI: 10.2337/dc14-0525.Peer-Reviewed Original ResearchConceptsLow-calorie foodsBrain responsesFood imagesEmotion processingEmotion responsesAdolescent brainNeural responsesNeural activationHigh-calorie food consumptionFood cravingsNeural alterationsBrain rewardFunctional MRIAdolescent obesityRisk of overconsumptionAdolescentsObesity-related metabolic changesEndogenous leptin levelsFood advertisingMetabolic changesYouthDevelopment of obesityType 2 diabetesLean adolescentsNation's youth
2013
Identification of Pleiotropic Genetic Effects on Obesity and Brain Anatomy
Curran JE, McKay DR, Winkler AM, Olvera RL, Carless MA, Dyer TD, Kent JW, Kochunov P, Sprooten E, Knowles EE, Comuzzie AG, Fox PT, Almasy L, Duggirala R, Blangero J, Glahn DC. Identification of Pleiotropic Genetic Effects on Obesity and Brain Anatomy. Human Heredity 2013, 75: 136-143. PMID: 24081229, PMCID: PMC3889074, DOI: 10.1159/000353953.Peer-Reviewed Original ResearchConceptsBody mass indexBrain anatomyEnergy homeostasisDevelopment of obesityLeptin-induced signalingCortical surface areaMass indexGut signalsChronic diseasesGlobal burdenObesitySubcortical volumesBiologic underpinningsReward circuitrySupramarginal gyrusGenetic factorsMexican-American individualsCommon genetic mechanismPleiotropic genetic effectsAnatomyBrainNeuroanatomical variationAmerican individualsCurrent knowledgePleiotropic effectsThe Gordian Knot of dysbiosis, obesity and NAFLD
Mehal WZ. The Gordian Knot of dysbiosis, obesity and NAFLD. Nature Reviews Gastroenterology & Hepatology 2013, 10: 637-644. PMID: 23958600, DOI: 10.1038/nrgastro.2013.146.Peer-Reviewed Original Research
2012
Year in Diabetes 2012: The Diabetes Tsunami
Sherwin R, Jastreboff AM. Year in Diabetes 2012: The Diabetes Tsunami. The Journal Of Clinical Endocrinology & Metabolism 2012, 97: 4293-4301. PMID: 23185035, PMCID: PMC3513534, DOI: 10.1210/jc.2012-3487.BooksConceptsClinical trialsAmerican Diabetes Association/European AssociationNew-onset type 1 diabetesPrevalence of diabetesCurrent treatment optionsLarge clinical trialsRecent clinical trialsBenefits of exerciseDevelopment of obesityNormal glucose metabolismType 1 diabetesStudy of DiabetesΒ-cell functionNovel therapeutic targetCentral nervous systemObese childrenSignificant morbidityTreatment optionsEndocrine SocietyInpatient settingTreatment strategiesIndividualized careOptimal preventionGlucose metabolismOptimization of interventions
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply