2025
Involvement of long non-coding RNA (lncRNA) MALAT1 in shear stress regulated adipocyte differentiation
Caron J, Ghanbariabdolmaleki M, Marino M, Qiu C, Wang B, Mak M, Wang S. Involvement of long non-coding RNA (lncRNA) MALAT1 in shear stress regulated adipocyte differentiation. Frontiers In Bioengineering And Biotechnology 2025, 13: 1570518. PMID: 40395673, PMCID: PMC12089105, DOI: 10.3389/fbioe.2025.1570518.Peer-Reviewed Original ResearchShear stressMesenchymal stem cellsPhysiologically relevant shear stressRelevant shear stressAdipocyte differentiationDifferentiation of mesenchymal stem cellsInvolvement of long non-coding RNAsShearBiophysical cuesFluid shearLong non-coding RNAsMechanical microenvironmentDownregulation of MALAT1Mechanosensitive roleTargets of lncRNAsRegulates adipocyte differentiationLong noncoding RNAsNon-coding RNAsSilencing MALAT1Mechanical cuesLncRNA MALAT1
2021
JAZF1 heterozygous knockout mice show altered adipose development and metabolism
Jeong J, Jang S, Park S, Kwon W, Kim S, Jang S, Ko J, Park S, Lim S, Yoon D, Yi J, Lee S, Kim M, Choi S, Ryoo Z. JAZF1 heterozygous knockout mice show altered adipose development and metabolism. Cell & Bioscience 2021, 11: 161. PMID: 34407873, PMCID: PMC8375039, DOI: 10.1186/s13578-021-00625-1.Peer-Reviewed Original ResearchHigh-fat dietAdipocyte differentiationNormal dietMetabolic disordersType 2 diabetes mellitusAdipose developmentImpaired adipocyte differentiationImpaired glucose homeostasisBody fat massAdipose tissue massHeterozygous knockout miceRegulation of PPARγKnockout mice showDiabetes mellitusControl miceFat massMouse embryonic fibroblastsGlucose homeostasisKnockout miceConclusionOur findingsTissue massAdipose tissueMice showJAZF1 expressionVivo modelHOXA5 Participates in Brown Adipose Tissue and Epaxial Skeletal Muscle Patterning and in Brown Adipocyte Differentiation
Holzman MA, Ryckman A, Finkelstein TM, Landry-Truchon K, Schindler KA, Bergmann JM, Jeannotte L, Mansfield JH. HOXA5 Participates in Brown Adipose Tissue and Epaxial Skeletal Muscle Patterning and in Brown Adipocyte Differentiation. Frontiers In Cell And Developmental Biology 2021, 9: 632303. PMID: 33732701, PMCID: PMC7959767, DOI: 10.3389/fcell.2021.632303.Peer-Reviewed Original ResearchSkeletal muscle fateNull mutant embryosBAT developmentBrown adipocyte differentiationEmbryonic day 12.5Muscle fateBrown adipose tissueSkeletal muscleMutant embryosHOXA5 proteinLipid droplet morphologyForelimb levelEmbryonic developmentMolecular roleMuscle developmentLineage tracingMuscle patterningCommon progenitorDependent regulationMuscle phenotypeAdipocyte differentiationMultiple tissuesConditional deletionDay 12.5Progenitors
2020
T-Cell Death-Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis
Kim S, Lee N, Park E, Yun H, Ha T, Jeon H, Yu J, Choi S, Shin B, Yu J, Dal Rhee S, Choi Y, Rho J. T-Cell Death-Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis. Molecules And Cells 2020, 44: 1-12. PMID: 33335079, PMCID: PMC7854182, DOI: 10.14348/molcells.2020.0143.Peer-Reviewed Original ResearchConceptsLigand-independent mannerRepeat domainRetinoid X receptorBinding domainNegative regulatorHeterodimer formationEarly stage of adipogenic differentiationActivation function-2 domainPleckstrin homology-likeT-cell death-associated geneDNA-binding domainDeletion mutant analysisDeath-associated genesStage of adipogenic differentiationLigand-binding domainMutant analysisGlutamine repeatsCell fateTranscriptional activityPeroxisome proliferator-activated receptor gTDAG51 expressionAdipocyte differentiationHeterodimer complexTDAG51Adipogenic cell fate
2017
Adipose tissue macrophages impair preadipocyte differentiation in humans
Liu LF, Craig CM, Tolentino LL, Choi O, Morton J, Rivas H, Cushman SW, Engleman EG, McLaughlin T. Adipose tissue macrophages impair preadipocyte differentiation in humans. PLOS ONE 2017, 12: e0170728. PMID: 28151993, PMCID: PMC5289462, DOI: 10.1371/journal.pone.0170728.Peer-Reviewed Original ResearchConceptsImpaired adipocyte differentiationSystemic insulin resistanceInsulin resistanceAdipocyte differentiationPreadipocyte differentiationMacrophage removalImpaired preadipocyte differentiationProinflammatory immune cellsAdipose tissue inflammationAbsence of CD14Insulin-resistant humansAdipose tissue samplesOil Red ODifferentiation of preadipocytesBariatric surgeryProinflammatory cytokinesInflammatory cytokinesTissue inflammationImmune cellsCytokine secretionAdiponectin secretionAdipogenic gene expressionPhysiologic mechanismsAdipose tissueVAT adipocytes
2016
Science Signaling Podcast for 25 October 2016: How glucocorticoids stimulate fat
Feldman B, VanHook A. Science Signaling Podcast for 25 October 2016: How glucocorticoids stimulate fat. Science Signaling 2016, 9 DOI: 10.1126/scisignal.aal1653.Peer-Reviewed Original ResearchAdipocyte proliferationResponse to high fat dietIncreased adipocyte proliferationIssue of Science SignalingInhibited adipocyte differentiationReduction of inflammationDifferentiation of adipocytesTreat inflammatory conditionsHigh-fat dietSecreted proteasesSecreted proteinsEndogenous glucocorticoidsAdipocyte differentiationDexamethasone treatmentPrimary mouseSynthetic glucocorticoidInflammatory conditionsSignaling pathwayGlucocorticoidHuman volunteersHuman adipocytesAdipose tissueNormal physiologyPodcast featuresFat tissueSREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation
Price NL, Holtrup B, Kwei SL, Wabitsch M, Rodeheffer M, Bianchini L, Suárez Y, Fernández-Hernando C. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation. Molecular And Cellular Biology 2016, 36: 1180-1193. PMID: 26830228, PMCID: PMC4800797, DOI: 10.1128/mcb.00745-15.Peer-Reviewed Original ResearchConceptsWhite adipose tissueCyclin-dependent kinase 6MiR-33bSREBP-1Adipocyte differentiationReceptor-γ target genesPeroxisome proliferator-activated receptor-γ target genesDevelopment of obesityStandard mouse modelSterol regulatory element-binding protein 2Lipid droplet formationLipid droplet accumulationIntronic microRNAsHost genesTarget genesMouse modelKinase 6Adipose tissueMetabolic diseasesNovel roleImportant regulatorHuman preadipocytesDroplet accumulationVivo assessmentProtein 2
2015
MicroRNA‐455 regulates brown adipogenesis via a novel HIF1an‐AMPK‐PGC1α signaling network
Zhang H, Guan M, Townsend K, Huang T, An D, Yan X, Xue R, Schulz T, Winnay J, Mori M, Hirshman M, Kristiansen K, Tsang J, White A, Cypess A, Goodyear L, Tseng Y. MicroRNA‐455 regulates brown adipogenesis via a novel HIF1an‐AMPK‐PGC1α signaling network. EMBO Reports 2015, 16: 1378-1393. PMID: 26303948, PMCID: PMC4766451, DOI: 10.15252/embr.201540837.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytes, BrownAdipogenesisAdipose Tissue, WhiteAMP-Activated Protein KinasesAnimalsCell DifferentiationCells, CulturedCold TemperatureHumansMiceMice, TransgenicMicroRNAsMixed Function OxygenasesNerve Tissue ProteinsNuclear ProteinsOrganelle BiogenesisPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaRepressor ProteinsSignal TransductionThermogenesisTranscription FactorsConceptsBrown adipose tissueBrown adipogenesisMiR-455Potential therapeutic targetSubcutaneous white fatTransgenic mice displayBrown adipocyte differentiationMRNA microarray profilingHuman metabolic disordersMicroRNA-455Metabolic disordersWhite fatTherapeutic targetAdipose tissueMice displayCold exposureAdipocyte differentiationAdipogenic differentiationAdipogenic programMicroarray profilingAdipogenesisMitochondrial biogenesisFunction studiesKey regulatorNew regulatorMyricetin suppresses differentiation of 3 T3-L1 preadipocytes and enhances lipolysis in adipocytes
Wang Q, Wang S, Yang X, You P, Zhang W. Myricetin suppresses differentiation of 3 T3-L1 preadipocytes and enhances lipolysis in adipocytes. Nutrition Research 2015, 35: 317-327. PMID: 25724338, DOI: 10.1016/j.nutres.2014.12.009.Peer-Reviewed Original ResearchMeSH Keywords3T3-L1 CellsAdipocytesAdipogenesisAnimalsAnti-Obesity AgentsCarrier ProteinsCCAAT-Enhancer-Binding Protein-betaCCAAT-Enhancer-Binding ProteinsCell DifferentiationCell SurvivalDown-RegulationFlavonoidsLipaseLipid MetabolismLipolysisLipoprotein LipaseMiceMitogen-Activated Protein KinasesPerilipin-1PhosphoproteinsPhosphorylationPPAR gammaRNA, MessengerSignal TransductionSterol EsteraseTriglyceridesConceptsJun N-terminal kinaseExtracellular signal-regulated kinaseT3-L1 preadipocytesN-terminal kinaseSignal-regulated kinaseTranscription factorsAdipogenesis-related transcription factorsT3-L1T3-L1 adipocytesAdipogenic transcription factorsGlucose transporter 4Phosphorylation of extracellular signal-regulated kinasePhosphorylation levels of extracellular signal-regulated kinaseDifferentiation of preadipocytesAdipocyte protein 2Levels of extracellular signal-regulated kinasePerilipin APeroxisome proliferator-activated receptor gAdipocyte differentiationDose-dependent increaseTransporter 4Adipocyte lipolysisPhosphorylation levelsProtein AMYR treatment
2014
An Adenosine Receptor-Krüppel-like Factor 4 Protein Axis Inhibits Adipogenesis*
Eisenstein A, Carroll S, Johnston-Cox H, Farb M, Gokce N, Ravid K. An Adenosine Receptor-Krüppel-like Factor 4 Protein Axis Inhibits Adipogenesis*. Journal Of Biological Chemistry 2014, 289: 21071-21081. PMID: 24928509, PMCID: PMC4110311, DOI: 10.1074/jbc.m114.566406.Peer-Reviewed Original ResearchConceptsKruppel-like factor 4Regulator of stem cell maintenanceRegulator of adipocyte differentiationStem cell maintenanceInhibit differentiationRegulator of adipogenesisAdenosine receptorsKnockdown of KLF4Adipose tissue of obese subjectsAdipose tissue developmentExtracellular ligandsA2B adenosine receptorsKruppel-like factor 4 expressionCell maintenanceExpression of Kruppel-like factor 4Signaling cascadesSignaling moleculesAdipocyte differentiationAdipose biologyStromal vascular cellsTissue developmentAdipocyte progenitorsInhibit adipogenesisObese subjectsA2BAR activation
2013
G Protein‐Coupled Receptors and Adipogenesis: A Focus on Adenosine Receptors
Eisenstein A, Ravid K. G Protein‐Coupled Receptors and Adipogenesis: A Focus on Adenosine Receptors. Journal Of Cellular Physiology 2013, 229: 414-421. PMID: 24114647, PMCID: PMC4362544, DOI: 10.1002/jcp.24473.Peer-Reviewed Original ResearchConceptsG protein-coupled receptorsAdenosine receptorsExtracellular signalsAdenosine signalingObesity epidemicMetabolic consequencesDevelopment of therapeuticsBlood flowDownstream messengersReceptorsTranscriptional eventsAdipose tissueMature adipocytesAdipocyte differentiationCellular differentiationMetabolic homeostasisAdenosineCoupled receptorsAdipocytesPhysiological outcomesDifferentiation processExcess nutrientsRegulation functionAdipogenesisDifferentiationA2b adenosine receptor regulation of adipocyte precursor fate and lineage determination: identification of a novel link to the stem cell factor KLF4
Eisenstein A, Ravid K. A2b adenosine receptor regulation of adipocyte precursor fate and lineage determination: identification of a novel link to the stem cell factor KLF4. The FASEB Journal 2013, 27: 599.1-599.1. DOI: 10.1096/fasebj.27.1_supplement.599.1.Peer-Reviewed Original ResearchIn vivo BrdU labelingA2BAR KO miceBay 60-6583A2B adenosine receptorsStem cell factorWild type miceAdipocyte differentiationHigh-fat diet feedingActivate adenylyl cyclaseA2BAR signalingAssociated with cellular proliferationFat diet feedingAdenosine signalingKO miceType miceSpecific agonistsStromal vascular fractionStem cell fateCell factorAdenosine receptorsInhibited adipocyte differentiationPrecursor proliferationA2BARAdenylyl cyclaseMesenchymal stem cells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply