2025
Mechanistic insights into deoxynivalenol-Induced hepatic cholestasis via IRE1α/HNF1α/FXR signaling dysregulation in mice
Wu Y, Lin R, Yuan Q, Sun Y, Yuan Y, Jiang T, Jiang J, Mu P, Wen J, Deng Y. Mechanistic insights into deoxynivalenol-Induced hepatic cholestasis via IRE1α/HNF1α/FXR signaling dysregulation in mice. Ecotoxicology And Environmental Safety 2025, 301: 118489. PMID: 40513317, DOI: 10.1016/j.ecoenv.2025.118489.Peer-Reviewed Original ResearchFarnesoid X receptorTotal bile acidsBile acidsFXR functionPro-inflammatory cytokine expressionPro-inflammatory cascadeDON-induced toxicityTarget of farnesoid X receptorEndoplasmic reticulum stressMurine modelUnfolded protein responseHepatocellular injuryNuclear receptor signalingCytokine expressionHepatic cholestasisHepatocellular damageReceptor signalingSignaling dysregulationLiver pathologyCholestasisPharmacological targetsCentral mechanismsTherapeutic targetSignaling AxisUpregulate pro-inflammatory cytokine expression
2024
Vagus nerve stimulation recruits the central cholinergic system to enhance perceptual learning
Martin K, Papadoyannis E, Schiavo J, Fadaei S, Issa H, Song S, Valencia S, Temiz N, McGinley M, McCormick D, Froemke R. Vagus nerve stimulation recruits the central cholinergic system to enhance perceptual learning. Nature Neuroscience 2024, 27: 2152-2166. PMID: 39284963, PMCID: PMC11932732, DOI: 10.1038/s41593-024-01767-4.Peer-Reviewed Original ResearchVagus nerve stimulationCentral cholinergic systemNerve stimulationEfficacy of vagus nerve stimulationCholinergic systemVagus nerve stimulation electrodesExperience-dependent plasticityAuditory cortical responsesPeripheral nerve stimulationCholinergic modulationAuditory discrimination taskClinical conditionsTwo-photon imagingCortical responsesCentral mechanismsCholinergic axonsStimulationEnhance task performanceNeural activityOptogenetic experimentsDiscrimination taskDiscrimination abilityEnhances perceptual learningPerceptual learningTask performanceTuning Responses to Polatuzumab Vedotin in B-cell Lymphoma.
Leveille E, Kothari S, Cosgun K, Mlynarczyk C, Müschen M. Tuning Responses to Polatuzumab Vedotin in B-cell Lymphoma. Cancer Discovery 2024, 14: 1577-1580. PMID: 39228298, DOI: 10.1158/2159-8290.cd-24-0644.Commentaries, Editorials and Letters
2023
Rewriting the Story of Mid- and Late-Life Family Caregiving: Applying a Narrative Identity Framework
Mroz E, Monin J, Gaugler J, Matta-Singh T, Fried T. Rewriting the Story of Mid- and Late-Life Family Caregiving: Applying a Narrative Identity Framework. The Gerontologist 2023, 64: gnad040. PMID: 37018754, PMCID: PMC10809219, DOI: 10.1093/geront/gnad040.Peer-Reviewed Original ResearchNarrative identity frameworkIdentity frameworkMemory systemNarrative therapy interventionFamily caregiversBehavioral outcomesTherapy interventionHealth-related outcomesFamily caregivingNegative consequencesLater lifeCaregiversLater life healthStress modelAdverse consequencesOlder peopleHealth needsExperienceIntensive supportLived experienceLife healthCaregivingBehaviorResearchCentral mechanismsModerators and Mediators of the Interpretation Bias–Emotional Disorders Link
Gadassi Polack R, Davis A, Joormann J. Moderators and Mediators of the Interpretation Bias–Emotional Disorders Link. CBT: Science Into Practice 2023, 55-77. DOI: 10.1007/978-3-031-23650-1_4.Peer-Reviewed Original ResearchEmotional disordersInterpretation biasInterpretation biasesProminent cognitive theoryEmotion regulationMaladaptive strategiesCognitive theoryDevelopmental sampleInterpersonal factorsPotential moderatorsLongitudinal examinationModeratorCurrent chapterBiasesDisordersBiasStimuliExperimental designSignificant supportCentral mechanismsRelationshipMediationMultiple factorsMediatorsCross-sectional study
2022
Persistent Frustration-Induced Reconfigurations of Brain Networks Predict Individual Differences in Irritability
Linke J, Haller S, Xu E, Nguyen L, Chue A, Botz-Zapp C, Revzina O, Perlstein S, Ross A, Tseng W, Shaw P, Brotman M, Pine D, Gotts S, Leibenluft E, Kircanski K. Persistent Frustration-Induced Reconfigurations of Brain Networks Predict Individual Differences in Irritability. Journal Of The American Academy Of Child & Adolescent Psychiatry 2022, 62: 684-695. PMID: 36563874, PMCID: PMC11224120, DOI: 10.1016/j.jaac.2022.11.009.Peer-Reviewed Original ResearchConceptsResting-state scansPathophysiology of irritabilitySelf-reported irritabilityFunctional magnetic resonance imagingMagnetic resonance imagingParent-reported irritabilitySpecific intervention targetsRisk factorsMotor functionPsychiatric consultationCircuit reorganizationCommon reasonAffective disordersBrain network configurationIrritability symptomsResonance imagingBrain regionsIrritabilityCentral mechanismsAberrant responsesPilot studyIntervention targetsRecovery periodPediatric irritabilityBrain networksAlpha-tocotrienol enhances arborization of primary hippocampal neurons via upregulation of Bcl-xL
Park HA, Crowe-White KM, Ciesla L, Scott M, Bannerman S, Davis AU, Adhikari B, Burnett G, Broman K, Ferdous KA, Lackey KH, Licznerski P, Jonas EA. Alpha-tocotrienol enhances arborization of primary hippocampal neurons via upregulation of Bcl-xL. Nutrition Research 2022, 101: 31-42. PMID: 35366596, PMCID: PMC9081260, DOI: 10.1016/j.nutres.2022.02.007.Peer-Reviewed Original ResearchConceptsPrimary hippocampal neuronsControl neuronsHippocampal neuronsAlpha-tocotrienolBcl-xLVitamin E familyCerebral ischemiaNeuronal viabilityMature neuronsB cellsNeurite complexityNeuronal functionMitochondrial energy productionBrain developmentCentral mechanismsNeuronsBeneficial effectsOxidative stressBcl-xL upregulationProtein levelsNeurite branchingTreatmentE familyATP levelsNeurite outgrowth
2021
Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity
Griffin GK, Wu J, Iracheta-Vellve A, Patti JC, Hsu J, Davis T, Dele-Oni D, Du PP, Halawi AG, Ishizuka JJ, Kim SY, Klaeger S, Knudsen NH, Miller BC, Nguyen TH, Olander KE, Papanastasiou M, Rachimi S, Robitschek EJ, Schneider EM, Yeary MD, Zimmer MD, Jaffe JD, Carr SA, Doench JG, Haining WN, Yates KB, Manguso RT, Bernstein BE. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature 2021, 595: 309-314. PMID: 33953401, PMCID: PMC9166167, DOI: 10.1038/s41586-021-03520-4.Peer-Reviewed Original ResearchConceptsImmune checkpoint blockadeCheckpoint blockadeCytotoxic T cell responsesT cell responsesMouse tumor modelsImmune exclusionImmune clustersRetroviral antigensImmune sensitivityImmunostimulatory genesIntrinsic immunogenicityCell responsesTumor modelCentral mechanismsHuman tumorsCancer cellsBlockadeCandidate targetsImmunogenicity
2020
Pathogenic mechanisms underlying spinocerebellar ataxia type 1
Tejwani L, Lim J. Pathogenic mechanisms underlying spinocerebellar ataxia type 1. Cellular And Molecular Life Sciences 2020, 77: 4015-4029. PMID: 32306062, PMCID: PMC7541529, DOI: 10.1007/s00018-020-03520-z.Peer-Reviewed Original ResearchConceptsGait impairmentSpinocerebellar ataxiaHeterogenous clinical manifestationsProgressive gait impairmentAdditional clinical featuresIon channel dysfunctionKey cellular changesCommon gait impairmentNervous system biologyHereditary cerebellar ataxiaClinical featuresClinical manifestationsCerebellar featuresCerebellar atrophyAutosomal dominant spinocerebellar ataxiaChannel dysfunctionPathogenic mechanismsDisease pathogenesisMolecular pathogenesisCerebellar ataxiaType 1Spinocerebellar ataxia type 1Central mechanismsAtaxia type 1Dominant spinocerebellar ataxias
2019
The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs
Virtue AT, McCright SJ, Wright JM, Jimenez MT, Mowel WK, Kotzin JJ, Joannas L, Basavappa MG, Spencer SP, Clark ML, Eisennagel SH, Williams A, Levy M, Manne S, Henrickson SE, Wherry EJ, Thaiss CA, Elinav E, Henao-Mejia J. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Science Translational Medicine 2019, 11 PMID: 31189717, PMCID: PMC7050429, DOI: 10.1126/scitranslmed.aav1892.Peer-Reviewed Original ResearchConceptsWhite adipose tissueDevelopment of obesityGut microbiotaInsulin resistanceWAT functionWhite adipose tissue inflammationGut microbiota-derived metabolitesAdipose tissue inflammationContext of obesityMicrobiota-derived metabolitesPotential therapeutic targetGut dysbiosisWAT inflammationTissue inflammationInsulin sensitivityTherapeutic targetAdipose tissueObesityWhite adipocytesPlasma abundanceCentral mechanismsMetabolic fitnessHost metabolismEnergy expenditureMicrobiota
2015
Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism
Burke MV, Small DM. Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism. Physiology & Behavior 2015, 152: 381-388. PMID: 26048305, PMCID: PMC4661139, DOI: 10.1016/j.physbeh.2015.05.036.Peer-Reviewed Original ResearchConceptsNon-nutritive sweetenersNNS consumptionCognitive processesSugar-sweetened beverage consumptionNegative health outcomesMetabolic hormone secretionPotential biological mechanismsHormone secretionSSB intakeBody weightGut microbiotaSweet taste receptorBeverage consumptionHealth outcomesNNS useCentral mechanismsTaste receptorsBiological mechanismsMetabolic functionsPhysiological mechanismsMetabolismIntakeSecretionReceptors
2014
O-GlcNAc Transferase Enables AgRP Neurons to Suppress Browning of White Fat
Ruan HB, Dietrich MO, Liu ZW, Zimmer MR, Li MD, Singh JP, Zhang K, Yin R, Wu J, Horvath TL, Yang X. O-GlcNAc Transferase Enables AgRP Neurons to Suppress Browning of White Fat. Cell 2014, 159: 306-317. PMID: 25303527, PMCID: PMC4509746, DOI: 10.1016/j.cell.2014.09.010.Peer-Reviewed Original ResearchConceptsAgRP neuronsFundamental cellular processesWhite fatN-acetylglucosamine (O-GlcNAc) modificationOrexigenic AgRP neuronsVoltage-dependent potassium channelsCellular processesGlcNAc transferaseDynamic physiological processesNuclear proteinsWhite adipose tissue browningPhysiological processesAdipose tissue browningDiet-induced obesityPhysiological relevanceTissue browningGenetic ablationBeige cellsEnergy metabolismInsulin resistanceNeuronal excitabilityPotassium channelsAdipose tissueCentral mechanismsNeurons
2013
Acupuncture and Clomiphene Citrate for Live Birth in Polycystic Ovary Syndrome: Study Design of a Randomized Controlled Trial
Kuang H, Li Y, Wu X, Hou L, Wu T, Liu J, Ng EH, Stener-Victorin E, Legro RS, Zhang H. Acupuncture and Clomiphene Citrate for Live Birth in Polycystic Ovary Syndrome: Study Design of a Randomized Controlled Trial. Evidence-based Complementary And Alternative Medicine 2013, 2013: 527303. PMID: 24023577, PMCID: PMC3762180, DOI: 10.1155/2013/527303.Peer-Reviewed Original ResearchPolycystic ovary syndromeControl acupuncturePCOS womenTrue acupunctureOvary syndromeLive birthsEfficacy of acupunctureLive birth rateFirst-line medicineSafety monitoring boardClomiphene citrateOngoing multicenterAdjuvant treatmentOvulation inductionControlled TrialsTreatment armsAlternative therapiesMonitoring boardAcupunctureFertility treatmentCentral mechanismsStudy designTrialsBirth rateWomenMitochondrial targets for arrhythmia suppression: is there a role for pharmacological intervention?
Akar FG. Mitochondrial targets for arrhythmia suppression: is there a role for pharmacological intervention? Journal Of Interventional Cardiac Electrophysiology 2013, 37: 249-258. PMID: 23824789, DOI: 10.1007/s10840-013-9809-3.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsMitochondrial targetsMitochondrial dysfunctionCritical cellular functionsCell death pathwaysCellular redox statusIon channel functionMitochondrial networkCellular functionsDeath pathwaysMitochondrial originIschemia-reperfusion injuryCommon cardiovascular disordersMitochondrial bioenergeticsExcitation-contraction couplingChannel functionRedox statusMechanistic linkHeart failureArrhythmia suppressionPharmacological interventionsCardiovascular disordersCentral mechanismsDysfunctionArrhythmogenesisEnergy production
2011
Epithelial–Mesenchymal Interactions in Biliary Diseases
Fabris L, Strazzabosco M. Epithelial–Mesenchymal Interactions in Biliary Diseases. Seminars In Liver Disease 2011, 31: 011-032. PMID: 21344348, PMCID: PMC3729030, DOI: 10.1055/s-0031-1272832.Peer-Reviewed Original ResearchConceptsReactive cholangiocytesChemo/cytokinesBile secretory functionLiver repair mechanismsDe novo expressionDifferent mesenchymal cell typesMost cholangiopathiesCell typesPortal fibrosisPortal infiltratesLiver diseaseBiliary diseaseUnderlying molecular mechanismsBiliary epitheliumDifferent etiologiesLiver repairSecretory functionNovo expressionCholangiopathyBiliary cellsCentral mechanismsMesenchymal cell typesMesenchymal propertiesEndothelial cellsGrowth factor
2010
The Insular Taste Cortex Contributes to Odor Quality Coding
Veldhuizen MG, Nachtigal D, Teulings L, Gitelman DR, Small DM. The Insular Taste Cortex Contributes to Odor Quality Coding. Frontiers In Human Neuroscience 2010, 4: 58. PMID: 20700500, PMCID: PMC2917218, DOI: 10.3389/fnhum.2010.00058.Peer-Reviewed Original ResearchCommon central mechanismInsular taste cortexTaste cortexCentral mechanismsFood odorsNon-food odorsOdor quality codingOlfactory cortexInsular cortexOlfactory stimulationCortexCentral pathwaysCortex contributesSweet tasteGustatory systemOlfactory stimuliInsulaStimulationDiscrete mechanismsSensationTaste qualityQuality codingOdor sweetnessPiriformSweetness ratings
2008
Cell adhesion receptors in mechanotransduction
Schwartz MA, DeSimone DW. Cell adhesion receptors in mechanotransduction. Current Opinion In Cell Biology 2008, 20: 551-556. PMID: 18583124, PMCID: PMC2581799, DOI: 10.1016/j.ceb.2008.05.005.Peer-Reviewed Original ResearchConceptsAdhesion receptorsCell fate decisionsCadherin-mediated adhesionCell adhesion receptorsFate decisionsMorphogenetic movementsTissue-level responsesCultured cellsExtracellular matrixMechanotransductionLevel responseCellsCytoskeletonCadherinReceptorsOrganismsAdhesionIntegrinsPathwayMechanical stimulationIntracellularMechanismMechanical stressResponseCentral mechanismsBrain circuits regulating energy homeostasis
Abizaid A, Horvath TL. Brain circuits regulating energy homeostasis. Peptides 2008, 149: 3-10. PMID: 18514925, PMCID: PMC2605273, DOI: 10.1016/j.regpep.2007.10.006.Peer-Reviewed Original Research
2001
Chapter 17 Neuroendocrine and emotional changes in the post-partum period
Carter C, Altemus M, Pchrousos G. Chapter 17 Neuroendocrine and emotional changes in the post-partum period. Progress In Brain Research 2001, 133: 241-249. PMID: 11589134, DOI: 10.1016/s0079-6123(01)33018-2.Peer-Reviewed Original ResearchConceptsPost-partum periodCorticotrophin-releasing hormoneAdrenal axisBehavioral effectsAdrenal stress axisCentral behavioral effectsPost-partum womenPowerful regulatory effectsFemale reproductive systemOptimal maternal careBrain levelsHigher bloodImmune systemExperimental animalsActive hormoneCentral mechanismsHormoneMaternal careReproductive systemNeuropeptide hormoneRegulatory effectsMood statesIntegrative functionsNeuropeptidesOxytocin
1998
Leptin Receptor Immunoreactivity is Associated with the Golgi Apparatus of Hypothalamic Neurones and Glial Cells
Diano S, Kalra S, Horvath T. Leptin Receptor Immunoreactivity is Associated with the Golgi Apparatus of Hypothalamic Neurones and Glial Cells. Journal Of Neuroendocrinology 1998, 10: 647-650. PMID: 9744481, DOI: 10.1046/j.1365-2826.1998.00261.x.Peer-Reviewed Original ResearchConceptsLeptin receptor immunoreactivityReceptor immunoreactivityPerikaryal membraneGlial cellsGolgi apparatusHypothalamic neuronesCentral nervous systemDifferent second messenger systemsHypothalamic neuronalPeripheral hormonesDentate gyrusSecond messenger systemsEndocrine functionLeptin receptorHypothalamic cellsNervous systemThyroid axisImmunoreactivityCentral mechanismsLeptinIntracellular mechanismsTrans cisternaeNeuronesMessenger systemsPredominant localization
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply