2024
Benefits of calorie restriction in mice are mediated via energy imbalance, not absolute energy or protein intake
Smith D, Mitchell S, Johnson M, Gibbs V, Dickinson S, Henschel B, Li R, Kaiser K, Chusyd D, Brown A, Allison D, Speakman J, Nagy T. Benefits of calorie restriction in mice are mediated via energy imbalance, not absolute energy or protein intake. GeroScience 2024, 46: 4809-4826. PMID: 38850387, PMCID: PMC11336014, DOI: 10.1007/s11357-024-01166-4.Peer-Reviewed Original ResearchProtein intakeCaloric restrictionPair-fedTNF-a levelsMale C57BL/6J miceBenefits of CRFat massC57BL/6J miceLean massTNF-aIGF-1Energy imbalanceMiceCalorie restrictionBenefits of calorie restrictionPhysical activityIntakeLongevity benefitsBody temperatureProtein intake per sePhysiological benefitsProteinLeptinExtended longevityHypothalamusSurgical techniques for damage control operations for abdominal, thoracic, pelvic, and extremity trauma
Patel P, Kapil A, Davis K, Luchette F. Surgical techniques for damage control operations for abdominal, thoracic, pelvic, and extremity trauma. 2024, 494-500.e1. DOI: 10.1016/b978-0-323-69787-3.00078-2.Peer-Reviewed Original ResearchDamage control operationTrauma patientsPhysiologic parametersDamage control managementDefinitive operative managementUrgent hemorrhage controlIntensive care unitIntravascular volume statusDamage control strategyPatient physiologic parametersImmediate resuscitationCare unitDefinitive managementPhysiologic derangementsVolume statusOperative courseOperative managementExtremity traumaInitial procedureSurgical techniquePatientsOngoing transfusionOrthopedic operationsHemorrhage controlBody temperature
2023
Inadvertent Perioperative Hypothermia.
Garceau C, Cosgrove M, Gonzalez K. Inadvertent Perioperative Hypothermia. AANA Journal 2023, 91: 303-309. PMID: 37527171.Peer-Reviewed Educational MaterialsConceptsInadvertent perioperative hypothermiaPerioperative periodAmbient operating room temperaturePreoperative risk factorsSurgical site infectionOperating room temperatureCore body temperatureWorld Health OrganizationHospital stayReadmission ratesSite infectionPerioperative hypothermiaPreoperative exposureRisk factorsRegional anesthesiaSkin exposurePhysiologic responsesGreater riskWashout solutionSkin preparationHealth OrganizationBody temperatureLonger lengthPatientsHypothermiaHigh body temperature increases gut microbiota-dependent host resistance to influenza A virus and SARS-CoV-2 infection
Nagai M, Moriyama M, Ishii C, Mori H, Watanabe H, Nakahara T, Yamada T, Ishikawa D, Ishikawa T, Hirayama A, Kimura I, Nagahara A, Naito T, Fukuda S, Ichinohe T. High body temperature increases gut microbiota-dependent host resistance to influenza A virus and SARS-CoV-2 infection. Nature Communications 2023, 14: 3863. PMID: 37391427, PMCID: PMC10313692, DOI: 10.1038/s41467-023-39569-0.Peer-Reviewed Original ResearchConceptsTakeda G protein-coupled receptor 5Gut microbiota-dependent mannerSARS-CoV-2 infectionMicrobiota-dependent mannerIncrease host resistanceLethal SARS-CoV-2 infectionDeoxycholic acidSevere acute respiratory syndrome coronavirus 2Neutrophil-dependent tissue damageAcute respiratory syndrome coronavirus 2Influenza virusRespiratory syndrome coronavirus 2G protein-coupled receptor 5Farnesoid X receptor agonistCOVID-19 patientsExposure of miceInfluenza virus infectionSyndrome coronavirus 2Coronavirus disease 2019Host resistanceX receptor agonistCertain bile acidsBasal body temperatureSARS-CoV-2Body temperatureSHANK3 in vagal sensory neurons regulates body temperature, systemic inflammation, and sepsis
Zhang L, Bang S, He Q, Matsuda M, Luo X, Jiang Y, Ji R. SHANK3 in vagal sensory neurons regulates body temperature, systemic inflammation, and sepsis. Frontiers In Immunology 2023, 14: 1124356. PMID: 36845137, PMCID: PMC9944123, DOI: 10.3389/fimmu.2023.1124356.Peer-Reviewed Original ResearchConceptsVagal sensory neuronsNodose ganglionSensory neuronsSystemic inflammationBody temperatureDorsal root ganglion sensory neuronsSerum IL-6 levelsAuricular vagus nerve stimulationBasal core temperatureIL-6 levelsVagus nerve stimulationAutism spectrum disorderRole of Shank3Conditional knockout miceSynaptic scaffolding proteinsSepsis mortalityNerve stimulationExcessive inflammationHeat painInflammation dysregulationKO miceKnockout miceInflammationSHANK3 expressionNovel molecular mechanism
2022
Phenytoin induced Stevens-Johnson Syndrome-toxic Epidermal Necrolysis Overlap Exacerbated by Cephalexin in a 65-Year-old Neurosurgical Patient: A Rare Case Report
Rathinam K, Sabarathinam S, Nuthalapati P, Mahalingam V. Phenytoin induced Stevens-Johnson Syndrome-toxic Epidermal Necrolysis Overlap Exacerbated by Cephalexin in a 65-Year-old Neurosurgical Patient: A Rare Case Report. Current Drug Research Reviews 2022, 14: 80-83. PMID: 34225642, DOI: 10.2174/2589977513666210322160009.Peer-Reviewed Original ResearchConceptsStevens-Johnson syndromeCase reportInduced Stevens-Johnson syndromeNecrosis syndromePost-surgical complicationsRare caseStevens-JohnsonOffending agentNikolsky's signSupportive careNeurosurgical patientsRaised body temperatureSyndromeSyndrome overlapPhenytoinPatientsCephalexinToxicityBody temperature
2021
IL-27 signalling promotes adipocyte thermogenesis and energy expenditure
Wang Q, Li D, Cao G, Shi Q, Zhu J, Zhang M, Cheng H, Wen Q, Xu H, Zhu L, Zhang H, Perry RJ, Spadaro O, Yang Y, He S, Chen Y, Wang B, Li G, Liu Z, Yang C, Wu X, Zhou L, Zhou Q, Ju Z, Lu H, Xin Y, Yang X, Wang C, Liu Y, Shulman GI, Dixit VD, Lu L, Yang H, Flavell RA, Yin Z. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature 2021, 600: 314-318. PMID: 34819664, DOI: 10.1038/s41586-021-04127-5.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAnimalsBariatric SurgeryDisease Models, AnimalEnergy MetabolismFemaleHumansInsulin ResistanceInterleukin-27MaleMiceObesityp38 Mitogen-Activated Protein KinasesPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaReceptors, InterleukinSignal TransductionThermogenesisUncoupling Protein 1ConceptsIL-27Beige adipose tissueAdipose tissueSerum IL-27Diet-induced obesityBariatric surgeryMetabolic morbidityImmunological factorsInsulin resistanceObesity showTherapeutic administrationMetabolic disordersMouse modelObesityPromising targetEnergy expenditureSignaling promotesThermogenesisBody temperatureMetabolic programsImportant roleTissueCritical roleImmunotherapyMorbidityIL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2
Goldberg EL, Shchukina I, Youm YH, Ryu S, Tsusaka T, Young KC, Camell CD, Dlugos T, Artyomov MN, Dixit VD. IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2. Cell Metabolism 2021, 33: 2277-2287.e5. PMID: 34473956, PMCID: PMC9067336, DOI: 10.1016/j.cmet.2021.08.004.Peer-Reviewed Original ResearchConceptsOld miceType 2 innate lymphoid cellsInnate lymphoid cellsTissue-resident cellsCore body temperatureAdoptive transferIL-33ILC2 numbersTissue inflammationAged miceImmunometabolic responsesMetabolic impairmentLymphoid cellsDietary restrictionImmune systemILC2Functional defectsMiceBody temperatureFailureCellsInflammationTranscriptomic analysisInfectionStress responseIrs2 deficiency alters hippocampus-associated behaviors during young adulthood
Tanokashira D, Wang W, Maruyama M, Kuroiwa C, White M, Taguchi A. Irs2 deficiency alters hippocampus-associated behaviors during young adulthood. Biochemical And Biophysical Research Communications 2021, 559: 148-154. PMID: 33940386, PMCID: PMC8361845, DOI: 10.1016/j.bbrc.2021.04.101.Peer-Reviewed Original ResearchConceptsYoung adult male miceAdult male miceMale miceAlzheimer's diseaseType 2 diabetes mellitusInsulin-like growth factor-1Brain energy metabolismGrowth factor-1Young adult malesCore body temperatureDiabetes mellitusInsulin resistanceInsulin/insulin-like growth factor-1Risk factorsBehavioral alterationsCognitive impairmentGenetic backgroundPremature deathHippocampusMiceYoung adulthoodAberrant alterationsFactor 1Abnormal changesBody temperature
2020
Leptin mediates postprandial increases in body temperature through hypothalamus–adrenal medulla–adipose tissue crosstalk
RJ P, K L, A R, J D, X L, Y Y, H Q, A W, X Y, GI S. Leptin mediates postprandial increases in body temperature through hypothalamus–adrenal medulla–adipose tissue crosstalk. 2020 DOI: 10.1530/ey.17.11.7.Peer-Reviewed Original ResearchFunctional Aspects of Hypothalamic Asymmetry
Kiss DS, Toth I, Jocsak G, Barany Z, Bartha T, Frenyo LV, Horvath TL, Zsarnovszky A. Functional Aspects of Hypothalamic Asymmetry. Brain Sciences 2020, 10: 389. PMID: 32575391, PMCID: PMC7349050, DOI: 10.3390/brainsci10060389.Peer-Reviewed Original ResearchFunctional lateralizationFunctional asymmetryHigher brain functionsHypothalamic controlSmall brain regionsCirculatory functionBrain areasReproductive functionBrain regionsBrain functionBrain halvesHypothalamic asymmetryEnergy expenditureBrain processingBody temperatureHypothalamusHomeostatic processesCircadian rhythmHemispheric specializationLateralizationData highlightPrevious studiesMenstrual cycle and thermoregulation during exercise in the heat: A systematic review and meta-analysis
Giersch GEW, Morrissey MC, Katch RK, Colburn AT, Sims ST, Stachenfeld NS, Casa DJ. Menstrual cycle and thermoregulation during exercise in the heat: A systematic review and meta-analysis. Journal Of Science And Medicine In Sport 2020, 23: 1134-1140. PMID: 32499153, DOI: 10.1016/j.jsams.2020.05.014.Peer-Reviewed Original ResearchConceptsSystematic reviewHeart rateSweat rateSkin temperatureMenstrual cycle phaseMenstrual cycle variationsAerobic exerciseFollicular phaseMenstrual cycleLuteal phaseInclusion criteriaMenstrual phaseLimited available dataMean skin temperatureEffect size estimatesSignificant differencesBody temperatureEffect sizeExerciseWomenCycle phaseInternal body temperatureReviewTotal numberLeptin mediates postprandial increases in body temperature through hypothalamus–adrenal medulla–adipose tissue crosstalk
Perry RJ, Lyu K, Rabin-Court A, Dong J, Li X, Yang Y, Qing H, Wang A, Yang X, Shulman GI. Leptin mediates postprandial increases in body temperature through hypothalamus–adrenal medulla–adipose tissue crosstalk. Journal Of Clinical Investigation 2020, 130: 2001-2016. PMID: 32149734, PMCID: PMC7108915, DOI: 10.1172/jci134699.Peer-Reviewed Original ResearchConceptsBrown adipose tissueLeptin concentrationsBody temperatureAdrenomedullary catecholamine secretionPlasma leptin concentrationsAdipose tissue lipolysisFasting-induced reductionFeeding-induced increaseMeal ingestionPlasma catecholaminesPostprandial increaseCatecholamine secretionObese ratsTissue lipolysisLean ratsAdrenergic activationAdipose tissueTissue crosstalkWeight gainIntragastric infusionRatsLeptinBolusLipolysisFatty acids
2019
Metabolism: A Burning Opioid Issue in Obesity Therapeutics
da Silva Catarino J, Horvath TL. Metabolism: A Burning Opioid Issue in Obesity Therapeutics. Current Biology 2019, 29: r1323-r1325. PMID: 31846684, DOI: 10.1016/j.cub.2019.10.055.Peer-Reviewed Original ResearchA Positioning Device for the Placement of Mice During Intranasal siRNA Delivery to the Central Nervous System.
Ullah I, Chung K, Beloor J, Lee SK, Kumar P. A Positioning Device for the Placement of Mice During Intranasal siRNA Delivery to the Central Nervous System. Journal Of Visualized Experiments 2019 PMID: 31475960, DOI: 10.3791/59201.Peer-Reviewed Original ResearchConceptsCentral nervous systemBlood-brain barrierNervous systemIntranasal drug deliveryBody temperatureMin rest periodMouse body temperatureCNS uptakeReceptor-binding domainRabies virus glycoproteinCNS deliveryAnesthetized miceDominant handNondominant handMiceInhalationDelivery of siRNASiRNA approachDelivery of drugsRest periodHeating padMouse headAdministrationVirus glycoproteinForward positionThe Role of Volume Regulation and Thermoregulation in AKI during Marathon Running
Mansour SG, Martin TG, Obeid W, Pata RW, Myrick KM, Kukova L, Jia Y, Bjornstad P, El-Khoury JM, Parikh CR. The Role of Volume Regulation and Thermoregulation in AKI during Marathon Running. Clinical Journal Of The American Society Of Nephrology 2019, 14: 1297-1305. PMID: 31413064, PMCID: PMC6730516, DOI: 10.2215/cjn.01400219.Peer-Reviewed Original ResearchConceptsCore body temperatureBody temperaturePercent of runnersAcute tubular injuryPlasma copeptin concentrationsMajority of runnersContinuous core body temperatureAKIN criteriaDays postmarathonPrior marathonsTransient AKICopeptin concentrationsTubular injuryInjury biomarkersPrimary outcomeProspective cohortNephron damageNegative sodiumUrine microscopyVolume lossUrine sedimentAKIAbstractTextSweat sodiumCopeptinGDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance
Luan HH, Wang A, Hilliard B, Carvalho F, Rosen CE, Ahasic A, Herzog E, Kang I, Pisani MA, Yu S, Zhang C, Ring A, Young L, Medzhitov R. GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell 2019, 178: 1231-1244.e11. PMID: 31402172, PMCID: PMC6863354, DOI: 10.1016/j.cell.2019.07.033.Peer-Reviewed Original ResearchConceptsViral infectionTriglyceride metabolismImpaired cardiac functionRole of GDF15Differentiation factor 15Plasma triglyceride levelsSympathetic outflowInflammatory damageTriglyceride levelsCardiac functionInflammatory responseExogenous administrationProtective effectFactor 15GDF15Central mediatorTissue toleranceBody temperatureInfectionMetabolismSepsisInflammationAdministrationHormoneTargeted temperature management for cardiac arrest
Mody P, Kulkarni N, Khera R, Link MS. Targeted temperature management for cardiac arrest. Progress In Cardiovascular Diseases 2019, 62: 272-278. PMID: 31078561, DOI: 10.1016/j.pcad.2019.05.007.Peer-Reviewed Original ResearchConceptsHospital sudden cardiac arrestSudden cardiac arrestTemperature managementCardiac arrestSurvivors of SCAInitial shockable rhythmTargeted temperature managementInitial clinical trialsNon-shockable rhythmCore body temperatureTherapeutic hypothermiaDuration of coolingNeurological functionShockable rhythmPatient populationClinical trialsCurrent guidelinesNeurological damageCurrent evidenceSevere hypoxiaSurvivorsBody temperatureReview articleArrestSignificant improvementCounting Calories: The Cost of Inflammation
Wang A, Medzhitov R. Counting Calories: The Cost of Inflammation. Cell 2019, 177: 223-224. PMID: 30951664, DOI: 10.1016/j.cell.2019.03.022.Peer-Reviewed Original Research
2018
Somatosensory Neurons Enter a State of Altered Excitability during Hibernation
Hoffstaetter LJ, Mastrotto M, Merriman DK, Dib-Hajj SD, Waxman SG, Bagriantsev SN, Gracheva EO. Somatosensory Neurons Enter a State of Altered Excitability during Hibernation. Current Biology 2018, 28: 2998-3004.e3. PMID: 30174191, PMCID: PMC6173314, DOI: 10.1016/j.cub.2018.07.020.Peer-Reviewed Original ResearchConceptsSomatosensory neuronsAction potentialsPeripheral somatosensory neuronsVoltage-gated sodium channelsTherapeutic hypothermiaAltered excitabilityFunctional deficitsCase of neuronsSensory functionFiring patternsNeuronsCold exposureInput resistanceSodium channelsRapid restorationBody temperatureHypometabolismHypothermiaDevelopment of strategiesSensory informationProlonged periodAdaptive responseArousalCNSExcitability
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply