2024
Dual function of LapB (YciM) in regulating Escherichia coli lipopolysaccharide synthesis
Shu S, Tsutsui Y, Nathawat R, Mi W. Dual function of LapB (YciM) in regulating Escherichia coli lipopolysaccharide synthesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2321510121. PMID: 38635633, PMCID: PMC11046580, DOI: 10.1073/pnas.2321510121.Peer-Reviewed Original ResearchMeSH KeywordsAmidohydrolasesEscherichia coliEscherichia coli ProteinsLipopolysaccharidesMembrane ProteinsMutationRubredoxinsConceptsLPS synthesisTetratricopeptide repeatCytoplasmic domainLevels of lipopolysaccharideCryo-EM structureGram-negative bacteriaLipopolysaccharide synthesisProtease FtsHRubredoxin domainLpxC activityTransmembrane helicesIn vivo analysisLpxCPseudomonas aeruginosaEnzymatic activityLapBFtsHAllosteric effectsYciMDual functionIn vitroTetratricopeptideAdaptorMotifDeacetylase
2022
Regulatory mechanisms of lipopolysaccharide synthesis in Escherichia coli
Shu S, Mi W. Regulatory mechanisms of lipopolysaccharide synthesis in Escherichia coli. Nature Communications 2022, 13: 4576. PMID: 35931690, PMCID: PMC9356133, DOI: 10.1038/s41467-022-32277-1.Peer-Reviewed Original ResearchMeSH KeywordsAmidohydrolasesEscherichia coliEscherichia coli ProteinsGram-Negative BacteriaLipopolysaccharidesMembrane ProteinsConceptsRegulatory mechanismsAnti-adaptor proteinsFirst committed stepMost Gram-negative bacteriaEssential glycolipidEssential membraneGram-negative bacteriaTransmembrane helicesAdaptor proteinCommitted stepCytoplasmic domainFtsHLPS synthesisAnalysis unravelsLipopolysaccharide synthesisLapBEscherichia coliE. coliPermeability barrierProtein levelsLpxCProtease activityProteinColiYejM
2020
Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex
Wu X, Siggel M, Ovchinnikov S, Mi W, Svetlov V, Nudler E, Liao M, Hummer G, Rapoport TA. Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. Science 2020, 368 PMID: 32327568, PMCID: PMC7380553, DOI: 10.1126/science.aaz2449.Peer-Reviewed Original ResearchMeSH KeywordsCarrier ProteinsCryoelectron MicroscopyEndoplasmic ReticulumEndoplasmic Reticulum-Associated DegradationMembrane GlycoproteinsMembrane ProteinsMolecular Dynamics SimulationMultiprotein ComplexesProtein DomainsProtein FoldingProteolysisSaccharomyces cerevisiae ProteinsUbiquitin-Protein LigasesConceptsHrd1 complexLuminal endoplasmic reticulum proteinsCryo-electron microscopy analysisHrd1 ubiquitin ligaseEndoplasmic reticulum proteinER membraneUbiquitin ligaseProtein degradationStructural basisReticulum proteinsPolypeptide loopMembrane regionsLateral gateLuminal binding sitesBinding sitesLuminal cavityForm twoYos9RetrotranslocationERADMicroscopy analysisSubcomplexLigaseHRD1Proteasome
2015
Single-particle electron microscopy in the study of membrane protein structure
De Zorzi R, Mi W, Liao M, Walz T. Single-particle electron microscopy in the study of membrane protein structure. Microscopy 2015, 65: 81-96. PMID: 26470917, PMCID: PMC4749050, DOI: 10.1093/jmicro/dfv058.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsSingle-particle electron microscopyMembrane protein structuresMembrane proteinsProtein structureAtomic modelElectron microscopyMore membrane proteinsUnprecedented qualityTransient receptor potential (TRP) channel familyDevice cameraChannel familyProteinStructure refinementMicroscopyStructureEnhanced potentialMinor roleCrystalsTechnical advancesTechnical limitationsGreat advantageShort orderFamily