2020
Role of potassium channels in female reproductive system
Kim J, Song K, Xu B, Wang T. Role of potassium channels in female reproductive system. Obstetrics & Gynecology Science 2020, 63: 565-576. PMID: 32838485, PMCID: PMC7494774, DOI: 10.5468/ogs.20064.Peer-Reviewed Original ResearchPotassium channelsFemale reproductive systemSulfonylurea receptorVoltage-gated (KvGonadotropin-releasing hormone neuronsEndothelium-derived hyperpolarizing factorSmall-conductance KCaHypothalamus-pituitary-ovarian axisFunction of potassium channelsReproductive systemProduction of progesteroneLuteal granulosa cellsRegulation of hormone releaseUterine quiescenceMyometrial contractionsInward rectifierSecretion of nitric oxideHormone neuronsHyperpolarizing factorResistance arteriesGranulosa cellsChannel activityHormone releaseLate pregnancySmall-conductanceSex Differences in Maxi‐K channel and Klotho Expressions in ROMK Bartter’s Mouse Kidney
Kim J, Song K, Lee E, Xu S, Wang T. Sex Differences in Maxi‐K channel and Klotho Expressions in ROMK Bartter’s Mouse Kidney. The FASEB Journal 2020, 34: 1-1. DOI: 10.1096/fasebj.2020.34.s1.04872.Peer-Reviewed Original ResearchMaxi-K channelsKO miceKlotho expressionMouse kidneyBartter's syndromeWT miceMaxi-KFemale WTRenal outer medullary potassium channelSurvival rateWT mouse kidneysUrinary potassium excretionProtein levelsBK channelsFemale mouse kidneyPotassium excretionVolume depletionROMKElectrolyte imbalancePotassium channelsBK expressionII phenotypeLife-threateningSex differencesBlood pressure
2017
Urinary bladder hypertrophy characteristic of male ROMK Bartter’s mice does not occur in female mice
Kim JM, Xu S, Guo X, Hu H, Dong K, Wang T. Urinary bladder hypertrophy characteristic of male ROMK Bartter’s mice does not occur in female mice. AJP Regulatory Integrative And Comparative Physiology 2017, 314: r334-r341. PMID: 29092859, PMCID: PMC5899254, DOI: 10.1152/ajpregu.00315.2017.Peer-Reviewed Original ResearchConceptsKO miceBladder hypertrophyBladder weightUrinary bladder hypertrophyRenal outer medullary potassium channelSeverity of hydronephrosisWild-type miceROMK knockout miceBladder capacityDetrusor muscleWT miceUrinary tractBartter's syndromeFemale miceSalt wastingHydronephrosisKnockout miceROMK expressionMiceBladderHypertrophyPotassium channelsMRNA levelsSignificant enlargementSyndrome
2016
Potassium Channelopathies and Gastrointestinal Ulceration
Han J, Lee SH, Giebisch G, Wang T. Potassium Channelopathies and Gastrointestinal Ulceration. Gut And Liver 2016, 10: 881-889. PMID: 27784845, PMCID: PMC5087926, DOI: 10.5009/gnl15414.Peer-Reviewed Original ResearchConceptsPotassium channelsGI tractPotassium channelopathiesAdenosine triphosphate-sensitive potassium channel openerTriphosphate-sensitive potassium channel openerNonsteroidal anti-inflammatory drugsAntianginal drug nicorandilAnti-inflammatory drugsPotassium channel openersOccurrence of ulcerationPotassium channel activityLong-term useRegulation of secretionGastrointestinal ulcerationUlcerative colitisPeptic ulcerationChannel openersGastric acidGastrointestinal tractUlcerationDifferent biological actionsTransporter inhibitorsAnal regionPotassium homeostasisTractExpression of KCNJ1 (ROMK) in the Gastrointestinal Tract
Han J, Lee S, Ishikawa Y, Guo X, Xu S, Wang T. Expression of KCNJ1 (ROMK) in the Gastrointestinal Tract. The FASEB Journal 2016, 30 DOI: 10.1096/fasebj.30.1_supplement.1224.31.Peer-Reviewed Original ResearchROMK expressionDistal colonMRNA expressionKO miceRenal outer medullary potassium channelEpithelial cellsGI tractGastric acid secretionGastrointestinal (GI) tractHK intakeROMK channelsWT miceDistal nephronReal-time PCRApical membraneROMKPotassium channelsAcid secretionParietal cellsIF stainingRenal tubulesQ-PCR dataEsophagusDiet animalsGastrointestinal tract
2014
Kir1.1 (ROMK) and Kv7.1 (KCNQ1/KvLQT1) are essential for normal gastric acid secretion: importance of functional Kir1.1
Vucic E, Alfadda T, MacGregor GG, Dong K, Wang T, Geibel JP. Kir1.1 (ROMK) and Kv7.1 (KCNQ1/KvLQT1) are essential for normal gastric acid secretion: importance of functional Kir1.1. Pflügers Archiv - European Journal Of Physiology 2014, 467: 1457-1468. PMID: 25127675, DOI: 10.1007/s00424-014-1593-0.Peer-Reviewed Original ResearchConceptsGastric parietal cellsPotassium channelsParietal cellsΒ-subunitKir1.1 channelsWild-type miceSecretagogue-stimulated gastric acid secretionApical poleGastric glandsLeak pathwayPotential therapeutic targetKir1.1Proton secretionRegulatory characteristicsKv7.1Therapeutic targetATPaseCell numberParietal cell numberCellsNormal gastric acid secretionSecretionInhibitorsAcid secretionMice
2011
Renal outer medullary potassium channel knockout models reveal thick ascending limb function and dysfunction
Wang T. Renal outer medullary potassium channel knockout models reveal thick ascending limb function and dysfunction. Clinical And Experimental Nephrology 2011, 16: 49-54. PMID: 22038261, DOI: 10.1007/s10157-011-0495-0.Peer-Reviewed Original ResearchConceptsThick ascending limbIon transporter expressionRenal outer medullary potassium channelBartter's syndromeInward rectifier potassium channelPotassium channelsSmall-conductance K channelsROMK null miceMedullary thick ascending limbType II Bartter's syndromeSimilar phenotypeMammalian kidneyApical membraneK channelsROMK knockout miceKnockout modelsChannel activityChannel mutationsRenal functionLimb functionNull micePhysiological conditionsSalt wastingTransporter expressionPathophysiological conditions
2003
The Effects of the Potassium Channel Opener Minoxidil on Renal Electrolytes Transport in the Loop of Henle
Wang T. The Effects of the Potassium Channel Opener Minoxidil on Renal Electrolytes Transport in the Loop of Henle. Journal Of Pharmacology And Experimental Therapeutics 2003, 304: 833-840. PMID: 12538840, DOI: 10.1124/jpet.102.043380.Peer-Reviewed Original ResearchConceptsLoop of HenleUrine volumeIn vivo microperfusion techniquesCa(2+ATP-sensitive potassium channelsRenal electrolyte transportK channel openerPotassium channel opener minoxidilGlomerular filtration rateApical K(+Fractional Na(+Natriuretic effectAntinatriuretic actionsRenal clearanceFiltration ratePotassium channelsUrinary excretionIncreased fluidAscending limbIntravenous injectionBlood pressureMicroperfusion techniqueHenlePerfusion fluidDecreased Na(+
1995
Effects of a novel KATP channel blocker on renal tubule function and K channel activity.
Wang T, Wang W, Klein-Robbenhaar G, Giebisch G. Effects of a novel KATP channel blocker on renal tubule function and K channel activity. Journal Of Pharmacology And Experimental Therapeutics 1995, 273: 1382-9. PMID: 7791111.Peer-Reviewed Original ResearchConceptsCortical collecting tubuleKATP channel blockerChannel blockersPotassium recyclingPotassium secretionAscending limbATP-sensitive potassium channelsActivation of KATPApical potassium conductanceReduced potassium secretionK channel activityRenal tubule functionLoop of HenleModulate NaCl reabsorptionPotassium conductanceSodium reabsorptionK secretionApical membranePrincipal cellsTubule functionPotassium channelsKATPBlockersReabsorptionEffects of Glyburide on Renal Tubule Transport and Potassium-Channel Activity
Wang T, Wang W, Klein-Robbenhaar G, Giebisch G. Effects of Glyburide on Renal Tubule Transport and Potassium-Channel Activity. Kidney & Blood Pressure Research 1995, 18: 169-182. PMID: 7481068, DOI: 10.1159/000173914.Peer-Reviewed Original ResearchConceptsK channelsApical membraneInhibition of K secretionApical K channelsRenal tubule transportCortical collecting tubuleK channel activityPatch-clamp techniquePotassium channel activityEffect of glyburideTubule transportK secretionRenal clearanceElectrolyte excretionPotassium channelsTransport of NaAscending limbGlyburideInhibit transportK recyclingKaliuresisHenleMicroperfusionTubulesExcretion