Featured Publications
ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through m6A modification-mediated RNA stability control
Gao Y, Zimmer J, Vasic R, Liu C, Gbyli R, Zheng S, Patel A, Liu W, Qi Z, Li Y, Nelakanti R, Song Y, Biancon G, Xiao A, Slavoff S, Kibbey R, Flavell R, Simon M, Tebaldi T, Li H, Halene S. ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through m6A modification-mediated RNA stability control. Cell Reports 2023, 42: 113163. PMID: 37742191, PMCID: PMC10636609, DOI: 10.1016/j.celrep.2023.113163.Peer-Reviewed Original ResearchConceptsAlkB homolog 5Post-transcriptional regulatory mechanismsHematopoietic stemNumerous cellular processesProgenitor cell fitnessEnergy metabolismMitochondrial ATP productionMethyladenosine (m<sup>6</sup>A) RNA modificationTricarboxylic acid cycleCell energy metabolismHuman hematopoietic cellsMitochondrial energy productionCell fitnessCellular processesRNA modificationsRNA methylationRegulatory mechanismsEnzyme transcriptsATP productionHomolog 5Acid cycleΑ-ketoglutarateHematopoietic cellsMessenger RNAΑ-KG
2022
The Coming of Age of Preclinical Models of MDS
Liu W, Teodorescu P, Halene S, Ghiaur G. The Coming of Age of Preclinical Models of MDS. Frontiers In Oncology 2022, 12: 815037. PMID: 35372085, PMCID: PMC8966105, DOI: 10.3389/fonc.2022.815037.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsTranscription factorsEpigenetic modifiersComplex molecular landscapeXenograft modelHematopoietic cellsDeletions/additionsMolecular landscapeRecurrent mutationsCell linesGenetic abnormalitiesMDS cellsXenograft murine modelChromosomal abnormalitiesCellsIneffective hematopoiesisTransgenicHematopoiesisMutationsPreclinical modelsWide spectrumMurine modelHeterogeneous groupLandscapeComing of age
2019
Low iron promotes megakaryocytic commitment of megakaryocytic-erythroid progenitors in humans and mice
Xavier-Ferrucio J, Scanlon V, Li X, Zhang PX, Lozovatsky L, Ayala-Lopez N, Tebaldi T, Halene S, Cao C, Fleming MD, Finberg KE, Krause DS. Low iron promotes megakaryocytic commitment of megakaryocytic-erythroid progenitors in humans and mice. Blood 2019, 134: 1547-1557. PMID: 31439541, PMCID: PMC6839952, DOI: 10.1182/blood.2019002039.Peer-Reviewed Original ResearchConceptsMK lineage commitmentExtracellular signal-regulated kinase (ERK) pathwaySignal-regulated kinase pathwayMegakaryocytic-erythroid progenitorsBone marrow transplantation assaysSignal transduction analysisIron-deficient conditionsGene expression analysisMegakaryocytic commitmentLineage commitmentTransferrin receptor 2MK lineageTmprss6-/- miceIron sensorExpression analysisKinase pathwayTransduction analysisTransplantation assaysErythroid progenitorsMarrow environmentHematopoietic cellsMessenger RNAPhospho-ERK1/2Systemic iron deficiencyLow iron
2018
SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells
Liang Y, Tebaldi T, Rejeski K, Joshi P, Stefani G, Taylor A, Song Y, Vasic R, Maziarz J, Balasubramanian K, Ardasheva A, Ding A, Quattrone A, Halene S. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells. Leukemia 2018, 32: 2659-2671. PMID: 29858584, PMCID: PMC6274620, DOI: 10.1038/s41375-018-0152-7.Peer-Reviewed Original ResearchConceptsSplicing factorsRNA processingAlternative splicingGene productsSplicing factor SRSF2Gene regulatory eventsAberrant alternative splicingSplice alterationsRecurrent mutationsSplicing proteinsHITS-CLIPSR familyMRNA splicingSplicing genesHematopoietic differentiationRegulatory eventsImpairs hematopoietic differentiationMolecular explanationWidespread modificationSplicingHematopoietic cellsMutationsBinding eventsOncogenesisProtein
2010
Different Roles of G Protein Subunits β1 and β2 in Neutrophil Function Revealed by Gene Expression Silencing in Primary Mouse Neutrophils*
Zhang Y, Tang W, Jones MC, Xu W, Halene S, Wu D. Different Roles of G Protein Subunits β1 and β2 in Neutrophil Function Revealed by Gene Expression Silencing in Primary Mouse Neutrophils*. Journal Of Biological Chemistry 2010, 285: 24805-24814. PMID: 20525682, PMCID: PMC2915716, DOI: 10.1074/jbc.m110.142885.Peer-Reviewed Original ResearchConceptsGene expressionShort hairpin RNAPrimary mouse neutrophilsHairpin RNADirectional cell migrationFluorescent marker proteinsMouse neutrophilsMouse bone marrow cellsHost innate immunityDouble knockdownExcellent systemIngested bacteriaCell migrationMarker proteinsDivergent rolesKnockdownHematopoietic cellsHematopoietic systemBone marrow cellsSubunits β1Retroviral vectorsInnate immunityBacterial phagocytosisRNAExpression
1999
Improved Expression in Hematopoietic and Lymphoid Cells in Mice After Transplantation of Bone Marrow Transduced With a Modified Retroviral Vector
Halene S, Wang L, Cooper R, Bockstoce D, Robbins P, Kohn D. Improved Expression in Hematopoietic and Lymphoid Cells in Mice After Transplantation of Bone Marrow Transduced With a Modified Retroviral Vector. Blood 1999, 94: 3349-3357. PMID: 10552944, PMCID: PMC9071851, DOI: 10.1182/blood.v94.10.3349.422k05_3349_3357.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAnimalsBone Marrow TransplantationFemaleGene DosageGene ExpressionGene Transfer TechniquesGenetic TherapyGenetic VectorsGreen Fluorescent ProteinsHematopoietic Stem CellsLeukemia Virus, MurineLuminescent ProteinsLymphocytesMaleMiceMice, Inbred C57BLPolymerase Chain ReactionRetroviridaeTime FactorsTransduction, GeneticConceptsEnhanced green fluorescent proteinHematopoietic cellsMoMuLV LTRMammalian hematopoietic cellsMurine embryonic stem cellsStem cellsEmbryonic stem cellsRetroviral vectorsGreen fluorescent proteinMoloney murine leukemia virusMouse bone marrow transplant modelReliable gene expressionHematopoietic stem cellsStable gene transferMurine leukemia virusGene expressionMND vectorTransduction efficiencyFluorescent proteinCopy numberGene transferIndividual cellsAmount of proteinVector copy numberBone marrow transplant model