2024
The human CD47 checkpoint is targeted by an immunosuppressive Aedes aegypti salivary factor to enhance arboviral skin infectivity
Marin-Lopez A, Huck J, Esterly A, Azcutia V, Rosen C, Garcia-Milian R, Sefik E, Vidal-Pedrola G, Raduwan H, Chen T, Arora G, Halene S, Shaw A, Palm N, Flavell R, Parkos C, Thangamani S, Ring A, Fikrig E. The human CD47 checkpoint is targeted by an immunosuppressive Aedes aegypti salivary factor to enhance arboviral skin infectivity. Science Immunology 2024, 9: eadk9872. PMID: 39121194, DOI: 10.1126/sciimmunol.adk9872.Peer-Reviewed Original ResearchConceptsSuppress antiviral responsesArthropod proteinsPathogen replicationAntiviral responseProtein AVertebrate hostsMosquito salivary proteinsUp-regulatedBlood feedingHuman macrophagesPleomorphic effectsSkin infectionsZika virus disseminationInhibit proinflammatory responsesSalivary proteinsProteinNatural ligandWhite blood cellsHuman skin explantsProinflammatory responseMosquito salivaVirus disseminationHuman CD47Salivary factorsArbovirus infection
2022
tRNA-m1A modification promotes T cell expansion via efficient MYC protein synthesis
Liu Y, Zhou J, Li X, Zhang X, Shi J, Wang X, Li H, Miao S, Chen H, He X, Dong L, Lee GR, Zheng J, Liu RJ, Su B, Ye Y, Flavell RA, Yi C, Wu Y, Li HB. tRNA-m1A modification promotes T cell expansion via efficient MYC protein synthesis. Nature Immunology 2022, 23: 1433-1444. PMID: 36138184, DOI: 10.1038/s41590-022-01301-3.Peer-Reviewed Original ResearchConceptsCell expansionKey functional proteinsVivo physiological roleDe novo protein productionCell cycle arrestTranslational controlRNA modificationsMyc proteinFunctional proteinsTranslation efficiencyKey proteinsCell homeostasisProtein productionPhysiological roleProtein synthesisProliferative stateCycle arrestConditional deletionT cell homeostasisNaive T cellsProteinQuiescent stateSpecific subsetT cellsCells
2019
To Code or Not to Code: What Is the Linc?
Flavell R. To Code or Not to Code: What Is the Linc? The FASEB Journal 2019, 33: 218.1-218.1. DOI: 10.1096/fasebj.2019.33.1_supplement.218.1.Peer-Reviewed Original ResearchNon-canonical proteinsNon-protein codingNon-coding RNAsUnbiased transcriptomics approachMammalian proteinsNovel ORFsRibosome associationUndiscovered proteinsTranscriptomic approachMethionine codonDistinct proteinsFunctional proteinsImportant transcriptsORFProteinEssential roleGenomeAbsolute requirementFASEB JournalGenesRNABacterial infectionsProteinaceous productsMisannotationsCodon
2013
Inflammasomes and Mucosal Immune Response
Elinav E, Henao-Mejia J, Flavell R. Inflammasomes and Mucosal Immune Response. Else Kröner-Fresenius Symposia 2013, 4: 48-52. DOI: 10.1159/000346510.Peer-Reviewed Original ResearchProtein complexesImmune responseDamage signalsCritical regulatorMolecular characterizationContext of infectionInnate immune responseCell deathMucosal immune responsesMicrobial infectionsPotent inflammatory cytokineCaspase-1Direct activationInflammatory cytokinesSterile inflammationMetabolic disordersInflammasome resultsDiverse rangeInflammasomeKey componentRegulatorInfectionProteinNLRC4AIM2
2011
Inflammasomes in Inflammatory Bowel Disease
Strowig T, Flavell R. Inflammasomes in Inflammatory Bowel Disease. 2011, 111-118. DOI: 10.1007/978-1-4614-0998-4_7.Peer-Reviewed Original ResearchPathogen-derived moleculesAssembly of inflammasomesMultiprotein complexesSensor proteinsInflammatory caspasesMature formDistinct familiesDiverse mechanismsInflammasome functionAntimicrobial defenseDisease mechanismsEndogenous moleculesCaspase-1Pathological conditionsPotent cytokineInflammasome componentsInflammasome activityAssemblyImmune systemInflammasomeInflammatory bowel diseaseCaspasesType II diabetesAuto-inflammatory diseasesProtein