2023
The Concise Guide to PHARMACOLOGY 2023/24: Ion channels
Alexander S, Mathie A, Peters J, Veale E, Striessnig J, Kelly E, Armstrong J, Faccenda E, Harding S, Davies J, Aldrich R, Attali B, Baggetta A, Becirovic E, Biel M, Bill R, Caceres A, Catterall W, Conner A, Davies P, De Clerq K, Delling M, Di Virgilio F, Falzoni S, Fenske S, Fortuny-Gomez A, Fountain S, George C, Goldstein S, Grimm C, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Hu M, Ijzerman A, Jabba S, Jarvis M, Jensen A, Jordt S, Kaczmarek L, Kellenberger S, Kennedy C, King B, Kitchen P, Liu Q, Lynch J, Meades J, Mehlfeld V, Nicke A, Offermanns S, Perez-Reyes E, Plant L, Rash L, Ren D, Salman M, Sieghart W, Sivilotti L, Smart T, Snutch T, Tian J, Trimmer J, Van den Eynde C, Vriens J, Wei A, Winn B, Wulff H, Xu H, Yang F, Fang W, Yue L, Zhang X, Zhu M. The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. British Journal Of Pharmacology 2023, 180: s145-s222. PMID: 38123150, PMCID: PMC11339754, DOI: 10.1111/bph.16178.Peer-Reviewed Original ResearchConceptsBest available pharmacological toolsOpen access knowledgebase sourceOfficial IUPHAR classificationAvailable pharmacological toolsDrug targetsG protein-coupled receptorsIon channelsProtein-coupled receptorsNomenclature guidanceClinical pharmacologyMajor pharmacological targetCatalytic receptorsSelective pharmacologyNuclear hormone receptorsPharmacological targetsPharmacological toolsHormone receptorsPrevious GuidesReceptorsLandscape formatHuman drug targetsPharmacologyConcise guideBiennial publicationRelated targets
2021
THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels
Alexander SP, Mathie A, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Southan C, Davies JA, Aldrich RW, Attali B, Baggetta AM, Becirovic E, Biel M, Bill RM, Catterall WA, Conner AC, Davies P, Delling M, Virgilio FD, Falzoni S, Fenske S, George C, Goldstein SAN, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Jarvis M, Jensen AA, Kaczmarek LK, Kellenberger S, Kennedy C, King B, Kitchen P, Lynch JW, Perez-Reyes E, Plant LD, Rash L, Ren D, Salman MM, Sivilotti LG, Smart TG, Snutch TP, Tian J, Trimmer JS, Van den Eynde C, Vriens J, Wei AD, Winn BT, Wulff H, Xu H, Yue L, Zhang X, Zhu M. THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal Of Pharmacology 2021, 178: s157-s245. PMID: 34529831, DOI: 10.1111/bph.15539.Peer-Reviewed Original ResearchConceptsBest available pharmacological toolsOpen access knowledgebase sourceOfficial IUPHAR classificationAvailable pharmacological toolsDrug targetsG protein-coupled receptorsHuman drug targetsIon channelsProtein-coupled receptorsNomenclature guidanceClinical pharmacologyMajor pharmacological targetCatalytic receptorsSelective pharmacologyNuclear hormone receptorsPharmacological targetsPharmacological toolsHormone receptorsPrevious GuidesReceptorsLandscape formatConcise guidePharmacologyBiennial publicationRelated targets
2019
THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels
Alexander S, Mathie A, Peters J, Veale E, Striessnig J, Kelly E, Armstrong J, Faccenda E, Harding S, Pawson A, Sharman J, Southan C, Davies J, Collaborators C, Aldrich R, Becirovic E, Biel M, Catterall W, Conner A, Davies P, Delling M, Di Virgilio F, Falzoni S, George C, Goldstein S, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Jarvis M, Jensen A, Kaczmarek L, Kellenberger S, Kennedy C, King B, Lynch J, Perez-Reyes E, Plant L, Rash L, Ren D, Sivilotti L, Smart T, Snutch T, Tian J, Van den Eynde C, Vriens J, Wei A, Winn B, Wulff H, Xu H, Yue L, Zhang X, Zhu M. THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal Of Pharmacology 2019, 176: s142-s228. PMID: 31710715, PMCID: PMC6844578, DOI: 10.1111/bph.14749.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsBest available pharmacological toolsOpen access knowledgebase sourceOfficial IUPHAR classificationAvailable pharmacological toolsDrug targetsClinical Pharmacology CommitteeG protein-coupled receptorsHuman drug targetsIon channelsProtein-coupled receptorsPharmacology CommitteeNomenclature guidanceMajor pharmacological targetCatalytic receptorsReceptor NomenclatureSelective pharmacologyNuclear hormone receptorsPharmacological targetsPharmacological toolsHormone receptorsPrevious GuidesReceptorsDrug classificationLandscape formatConcise guide
2015
Receptors and Transduction Mechanisms I: Receptors Coupled Directly to Ion Channels
Levitan I, Kaczmarek L. Receptors and Transduction Mechanisms I: Receptors Coupled Directly to Ion Channels. 2015, 239-262. DOI: 10.1093/med/9780199773893.003.0011.ChaptersSensory Receptors
Levitan I, Kaczmarek L. Sensory Receptors. 2015, 295-326. DOI: 10.1093/med/9780199773893.003.0013.ChaptersLearning and Memory
Levitan I, Kaczmarek L. Learning and Memory. 2015, 489-528. DOI: 10.1093/med/9780199773893.003.0019.ChaptersSimple nervous systemLong-term depressionLong-term potentiationMolecular mechanismsEnormous diversityNormal developmentCellular mechanismsNervous systemPresynaptic terminalsMost nervous systemsCyclic AMPSynaptic scalingPathwayMemory formationPlasticityPostsynaptic receptorsSynaptic taggingSynaptic connectionsLong-term phaseReduced preparationsDiversitySpike-timing dependent plasticityMechanismSynapseReceptorsFormation, Maintenance, and Plasticity of Chemical Synapses
Levitan I, Kaczmarek L. Formation, Maintenance, and Plasticity of Chemical Synapses. 2015, 415-456. DOI: 10.1093/med/9780199773893.003.0017.ChaptersAppropriate postsynaptic targetsPostsynaptic action potentialsImmediate early gene FosPostsynaptic receptorsPostsynaptic targetsNMDA receptorsExcitatory neuronsExcitatory synapsesPostsynaptic sitesPresynaptic terminalsPostsynaptic partnersAction potentialsNeuromuscular junctionSynapse formationCertain synapsesChemical synapsesAdult animalsElectrical activitySynapsesReceptorsBiochemical changesMental retardation proteinEph receptorsCoordinated activitySuch reorganization
2013
Slack, Slick, and Sodium‐Activated Potassium Channels
Kaczmarek LK. Slack, Slick, and Sodium‐Activated Potassium Channels. International Scholarly Research Notices 2013, 2013: 354262. PMID: 24319675, PMCID: PMC3850776, DOI: 10.1155/2013/354262.Peer-Reviewed Original ResearchSodium-activated potassium currentPotassium channelsMore action potentialsCentral nervous systemAMPA receptorsNeuronal plasticityNative neuronsNervous systemNeurotransmitter receptorsSlick channelsIntracellular sodiumPotassium currentAction potentialsIntellectual functionSlack channelsReceptorsHuman mutationsSevere defectsCentral roleNeurons
2008
Na+-mediated coupling between AMPA receptors and KNa channels shapes synaptic transmission
Nanou E, Kyriakatos A, Bhattacharjee A, Kaczmarek LK, Paratcha G, Manira A. Na+-mediated coupling between AMPA receptors and KNa channels shapes synaptic transmission. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 20941-20946. PMID: 19095801, PMCID: PMC2634910, DOI: 10.1073/pnas.0806403106.Peer-Reviewed Original Research
2006
Opposite Regulation of Slick and Slack K+ Channels by Neuromodulators
Santi CM, Ferreira G, Yang B, Gazula VR, Butler A, Wei A, Kaczmarek LK, Salkoff L. Opposite Regulation of Slick and Slack K+ Channels by Neuromodulators. Journal Of Neuroscience 2006, 26: 5059-5068. PMID: 16687497, PMCID: PMC6674240, DOI: 10.1523/jneurosci.3372-05.2006.Peer-Reviewed Original ResearchConceptsSlo2 channelsHippocampal brain sectionsCultured hippocampal neuronsProtein kinase CWhole-cell currentsPKC activator PMANeuronal excitabilityHippocampal neuronsBrain sectionsBasal levelsImmunocytochemical techniquesGalphaq proteinElectrical activitySlo2.1Activator PMAReceptorsChannel gene familyWidespread expressionChannel activityExcitabilityNeuromodulatorsIntracellular concentrationPotential of cellsBrainXenopus oocytes
2001
Neurotransmitters and Neurohormones
B.Levitan I, Kaczmarek L. Neurotransmitters and Neurohormones. 2001, 223-252. DOI: 10.1093/oso/9780195145236.003.0010.Peer-Reviewed Original ResearchReceptors and Transduction Mechanisms I: Receptors Coupled Directly to Ion Channels
B.Levitan I, Kaczmarek L. Receptors and Transduction Mechanisms I: Receptors Coupled Directly to Ion Channels. 2001, 253-284. DOI: 10.1093/oso/9780195145236.003.0011.Peer-Reviewed Original ResearchTarget neuronsIon channelsParticular neurotransmitterNeuroactive substancesTransmitter releaseNervous systemNeurotransmitter receptorsNerve cellsHormone receptorsNeuronsTarget cellsReceptorsBiological responsesNeurotransmittersIntercellular communicationCell typesExtracellular signalsChemical signalsTransduction mechanismsResponseCellsNeurohormonesReceptors and Transduction Mechanisms II: Indirectly Coupled Receptor/Ion Channel Systems
B.Levitan I, Kaczmarek L. Receptors and Transduction Mechanisms II: Indirectly Coupled Receptor/Ion Channel Systems. 2001, 285-314. DOI: 10.1093/oso/9780195145236.003.0012.Peer-Reviewed Original ResearchExtracellular signalsSingle protein complexIon channel familyMembrane ion channelsBiological responsesFamily of receptorsProtein complexesIntercellular communicationTarget cellsChannel familyIon channelsIon channel systemsCellsSpecific receptorsNeuronal excitabilityParticular target cellsFinal stepReceptorsFamilyTransductionBiochemistryComplexesResponseExcitabilityNeuronsSensory Receptors
B.Levitan I, Kaczmarek L. Sensory Receptors. 2001, 341-372. DOI: 10.1093/oso/9780195145236.003.0014.Peer-Reviewed Original ResearchAplysia Ror Forms Clusters on the Surface of Identified Neuroendocrine Cells
McKay S, Hislop J, Scott D, Bulloch A, Kaczmarek L, Carew T, Sossin W. Aplysia Ror Forms Clusters on the Surface of Identified Neuroendocrine Cells. Molecular And Cellular Neuroscience 2001, 17: 821-841. PMID: 11358481, DOI: 10.1006/mcne.2001.0977.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAmino Acid SequenceAnimalsAntibody SpecificityAplysiaBase SequenceCaenorhabditis elegans ProteinsCell CompartmentationCells, CulturedCloning, MolecularGanglia, InvertebrateImmunohistochemistryMolecular Sequence DataNeuronsNeurosecretory SystemsReceptor Protein-Tyrosine KinasesReceptor Tyrosine Kinase-like Orphan ReceptorsReceptors, Cell SurfaceRNA, MessengerConceptsBag cell neuronsNeuroendocrine bag cell neuronsROR receptorsCultured bag cell neuronsRegulation of growthReceptor tyrosine kinasesMarine mollusk Aplysia californicaPeripheral neuronal processesMollusk Aplysia californicaCellular polarityFunctional domainsTyrosine kinaseIntracellular organellesCell surfaceProteinNeuroendocrine cellsKinaseAplysia californicaRelease sitesNeuronal processesOrganellesNeuronal populationsForm clustersGanglionic neuropilReceptors
1998
Expression of a foreign G-protein coupled receptor modulates the excitability of the peptidergic bag cell neurons of Aplysia
Whim M, Kaczmarek L. Expression of a foreign G-protein coupled receptor modulates the excitability of the peptidergic bag cell neurons of Aplysia. Neuroscience Letters 1998, 258: 143-146. PMID: 9885951, DOI: 10.1016/s0304-3940(98)00850-7.Peer-Reviewed Original ResearchConceptsBag cell neuronsCell neuronsMetabotropic glutamate receptorsG proteinsPeptidergic bag cell neuronsAfferent stimulationSpontaneous firingAfferent inputGlutamate receptorsSecond messenger pathwaysPharmacological activationReceptor activationAfterdischargesNeuronsMessenger pathwaysReceptorsActivationAdditional pathwaysExpressionExcitabilityPathwaySustained period
1997
Regulation by insulin of a unique neuronal Ca2+ pool and of neuropeptide secretion
Jonas E, Knox R, Smith T, Wayne N, Connor J, Kaczmarek L. Regulation by insulin of a unique neuronal Ca2+ pool and of neuropeptide secretion. Nature 1997, 385: 343-346. PMID: 9002519, DOI: 10.1038/385343a0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBenzoquinonesCalciumCalcium ChannelsCells, CulturedCyclic AMPEndoplasmic ReticulumHeparinInositol 1,4,5-TrisphosphateInositol 1,4,5-Trisphosphate ReceptorsInsulinInvertebrate HormonesLactams, MacrocyclicNeuronsNeuropeptidesProtein-Tyrosine KinasesQuinonesReceptors, Cytoplasmic and NuclearRifabutinThapsigarginConceptsIntracellular Ca2Neuropeptide secretionSpontaneous action potentialsEffect of insulinSecretion of neuropeptidesTyrosine kinase receptorsAcute riseBag cell neuronsDistal tipNeuronal dischargeNeuronal Ca2Distinct intracellular poolsCell neuronsAction potentialsCyclic AMP analogueInsulinNeuropeptidesInsulin receptorKinase receptorsSecretionPresumed siteNeuronsIntracellular poolMitochondrial Ca2Receptors
1996
Insulin receptor in Aplysia neurons: characterization, molecular cloning, and modulation of ion currents
Jonas E, Knox R, Kaczmarek L, Schwartz J, Solomon D. Insulin receptor in Aplysia neurons: characterization, molecular cloning, and modulation of ion currents. Journal Of Neuroscience 1996, 16: 1645-1658. PMID: 8774433, PMCID: PMC6578688, DOI: 10.1523/jneurosci.16-05-01645.1996.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAmino Acid SequenceAnimalsAplysiaBase SequenceCalcium ChannelsCloning, MolecularDNA, ComplementaryElectrophysiologyImmunohistochemistryInsulinIon ChannelsMolecular ProbesMolecular Sequence DataNeuronsPotassium ChannelsProtein-Tyrosine KinasesReceptor, InsulinTissue DistributionConceptsBag cell neuronsInsulin receptorInsulin-like peptidesImmunocytochemical staining showCell neuronsTyrosine kinase receptorsVertebrate insulinsMolecular cloningHerbimycin ATyrosine residuesTyrosine kinaseKinase receptorsInsulin-like growth factor-1Factor 1Staining showsVoltage-clamped neuronsVoltage-dependent Ca2Growth factor-1Aplysia californicaAplysia neuronsNervous systemReceptorsAction potentialsNeuronsInsulin
1980
Peptides controlling behavior in Aplysia.
Strumwasser F, Kaczmarek L, Chiu A, Heller E, Jennings K, Viele D. Peptides controlling behavior in Aplysia. Society Of General Physiologists Series 1980, 35: 197-218. PMID: 7414370.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsCentral nervous systemNervous systemPeripheral targetsSmall molecule transmittersSubstance PReceptor binding sitesPeripheral sourcesNeuropeptidergic systemsDifferent receptorsBag cellsHormonal peptidesSingle hormoneRespective peptidesAtrial glandHormoneGlandELHPeptidesSystem actionsTargetSpecific actionsSomatostatinGastrinReceptors