2023
Modulation of potassium conductances optimizes fidelity of auditory information
Kaczmarek L. Modulation of potassium conductances optimizes fidelity of auditory information. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2216440120. PMID: 36930599, PMCID: PMC10041146, DOI: 10.1073/pnas.2216440120.Peer-Reviewed Original ResearchConceptsPotassium currentAuditory brainstem neuronsAuditory stimuliHigh-frequency firingGroups of neuronsLow-frequency stimuliBrainstem neuronsHigh-frequency stimuliIntrinsic excitabilityEnsembles of neuronsPostsynaptic neuronsAuditory neuronsNeurotransmitter releaseModulatory mechanismsAuditory stimulationFiring ratePotassium conductanceNeuronsPotassium channelsSingle neuronsAmplitude of currentsLoud soundsEnvironmental sound levelsChannel activityPositive membrane potentials
2019
An Epilepsy-Associated KCNT1 Mutation Enhances Excitability of Human iPSC-Derived Neurons by Increasing Slack KNa Currents
Quraishi IH, Stern S, Mangan KP, Zhang Y, Ali SR, Mercier MR, Marchetto MC, McLachlan MJ, Jones EM, Gage FH, Kaczmarek LK. An Epilepsy-Associated KCNT1 Mutation Enhances Excitability of Human iPSC-Derived Neurons by Increasing Slack KNa Currents. Journal Of Neuroscience 2019, 39: 7438-7449. PMID: 31350261, PMCID: PMC6759030, DOI: 10.1523/jneurosci.1628-18.2019.Peer-Reviewed Original ResearchConceptsSevere epileptic encephalopathyAction potentialsEpileptic encephalopathyFiring rateCurrent-clamp recordingsSodium-activated potassium channelsMaximal firing rateIntensity of firingMean firing rateKCNT1 mutationsCortical neuronsCell-autonomous mechanismsEffective treatmentHuman neuronsPotassium currentActive neuronsNeuronsPotassium channelsCompensatory changesDisease-causing mutationsHyperexcitabilityHuman iPSCEncephalopathyExcitabilityStem cells
2012
Gradients and Modulation of K+ Channels Optimize Temporal Accuracy in Networks of Auditory Neurons
Kaczmarek LK. Gradients and Modulation of K+ Channels Optimize Temporal Accuracy in Networks of Auditory Neurons. PLOS Computational Biology 2012, 8: e1002424. PMID: 22438799, PMCID: PMC3305353, DOI: 10.1371/journal.pcbi.1002424.Peer-Reviewed Original ResearchConceptsSpontaneous activityPotassium currentRandom spontaneous activityAuditory brainstem neuronsAuditory brainstem nucleiSubset of neuronsMaximal firing rateHigh rateNormal auditory processingPattern of stimulationBrainstem neuronsBrainstem nucleiSynaptic outputAuditory neuronsChannel expressionSuch neuronsStimulus rateAction potentialsTonotopic axisSound stimulationFiring ratePotassium conductanceNeuronsKv3 channelsIndividual neurons
2006
Pharmacological activation and inhibition of Slack (Slo2.2) channels
Yang B, Gribkoff VK, Pan J, Damagnez V, Dworetzky SI, Boissard CG, Bhattacharjee A, Yan Y, Sigworth FJ, Kaczmarek LK. Pharmacological activation and inhibition of Slack (Slo2.2) channels. Neuropharmacology 2006, 51: 896-906. PMID: 16876206, DOI: 10.1016/j.neuropharm.2006.06.003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Infective Agents, LocalBepridilBithionolCalcium Channel BlockersCell Line, TransformedDose-Response Relationship, DrugDose-Response Relationship, RadiationElectric StimulationEnzyme ActivationEnzyme InhibitorsHumansMembrane PotentialsOocytesPatch-Clamp TechniquesPotassium Channels, Calcium-ActivatedQuinidineTransfectionXenopusConceptsSlack channelsConcentration-dependent mannerIschemic injuryPharmacological activationKNa channelsMammalian brainFiring ratePharmacological propertiesChannel subunitsReversible increaseChannel activityCell linesBepridilHEK cellsRobust activatorNeuronsStable cell linesInhibitionExcised patchesXenopus oocytesPresent studyBithionolChannel openingSpecific roleMembrane patches
2005
For K+ channels, Na+ is the new Ca2+
Bhattacharjee A, Kaczmarek LK. For K+ channels, Na+ is the new Ca2+. Trends In Neurosciences 2005, 28: 422-428. PMID: 15979166, DOI: 10.1016/j.tins.2005.06.003.Peer-Reviewed Original Research