2024
Disease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons
Wu J, Quraishi I, Zhang Y, Bromwich M, Kaczmarek L. Disease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons. Cell Reports 2024, 43: 113904. PMID: 38457342, PMCID: PMC11013952, DOI: 10.1016/j.celrep.2024.113904.Peer-Reviewed Original ResearchInhibitory neuronsRegulation of neuronal excitabilityPotassium channel mutationsVoltage-dependent sodiumInhibitory cortical neuronsGain-of-function mutationsAxon initial segmentKCNT1 geneNeuronal excitabilityChannel subunitsChannel mutationsNetwork hyperexcitabilityMouse modelNeuron typesCortical neuronsTreat epilepsyNeuronsExcitable neuronsNeurological disordersSevere intellectual disabilityMutationsInitial segmentKCNT1ExpressionHyperexcitability
2018
Extraction of Auditory Information by Modulation of Neuronal Ion Channels
Kaczmarek L. Extraction of Auditory Information by Modulation of Neuronal Ion Channels. 2018, 273-300. DOI: 10.1093/oxfordhb/9780190849061.013.23.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsTrapezoid bodyMedial nucleusNeuronal firing patternsGroups of neuronsPotassium channel subunitsAuditory neuronsFiring patternsChannel subunitsAuditory informationIon channelsAuditory inputNeuronal ion channelsSuch modulationComplex soundsSpecific patternsNeuronsIncoming stimuliAuditory environmentIdentical neuronsSame patternVariety of responsesSmall numberModulationReviewGroup
2010
Specific and rapid effects of acoustic stimulation on the tonotopic distribution of Kv3.1b potassium channels in the adult rat
Strumbos J, Polley D, Kaczmarek L. Specific and rapid effects of acoustic stimulation on the tonotopic distribution of Kv3.1b potassium channels in the adult rat. Neuroscience 2010, 167: 567-572. PMID: 20219640, PMCID: PMC2854512, DOI: 10.1016/j.neuroscience.2010.02.046.Peer-Reviewed Original ResearchMeSH KeywordsAcoustic StimulationAdaptation, PhysiologicalAnimalsAntibody SpecificityAuditory PathwaysAuditory ThresholdImmunohistochemistryIon Channel GatingNerve Tissue ProteinsNeuronal PlasticityRatsRats, Sprague-DawleyReaction TimeRhombencephalonShaw Potassium ChannelsSound LocalizationSynaptic TransmissionTime FactorsUp-RegulationConceptsTotal cellular levelsCytoplasmic C-terminusCellular levelVoltage-gated potassium channel subunitsPotassium channel subunitsTonotopic distributionAdult ratsC-terminusChannel proteinsChannel subunitsSound localization circuitIon channelsProteinExperience-dependent plasticityCultured neuronsPotassium channelsHigh-frequency stimuliAcute slicesMedial nucleusSynaptic activityAuditory neuronsKv3.1 proteinMin of exposureAction potentialsAcoustic stimulation
2006
Pharmacological activation and inhibition of Slack (Slo2.2) channels
Yang B, Gribkoff VK, Pan J, Damagnez V, Dworetzky SI, Boissard CG, Bhattacharjee A, Yan Y, Sigworth FJ, Kaczmarek LK. Pharmacological activation and inhibition of Slack (Slo2.2) channels. Neuropharmacology 2006, 51: 896-906. PMID: 16876206, DOI: 10.1016/j.neuropharm.2006.06.003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Infective Agents, LocalBepridilBithionolCalcium Channel BlockersCell Line, TransformedDose-Response Relationship, DrugDose-Response Relationship, RadiationElectric StimulationEnzyme ActivationEnzyme InhibitorsHumansMembrane PotentialsOocytesPatch-Clamp TechniquesPotassium Channels, Calcium-ActivatedQuinidineTransfectionXenopusConceptsSlack channelsConcentration-dependent mannerIschemic injuryPharmacological activationKNa channelsMammalian brainFiring ratePharmacological propertiesChannel subunitsReversible increaseChannel activityCell linesBepridilHEK cellsRobust activatorNeuronsStable cell linesInhibitionExcised patchesXenopus oocytesPresent studyBithionolChannel openingSpecific roleMembrane patchesPolicing the Ball: A New Potassium Channel Subunit Determines Inactivation Rate
Kaczmarek LK. Policing the Ball: A New Potassium Channel Subunit Determines Inactivation Rate. Neuron 2006, 49: 642-644. PMID: 16504937, DOI: 10.1016/j.neuron.2006.02.011.Peer-Reviewed Original Research
2003
Compensatory Anion Currents in Kv1.3 Channel-deficient Thymocytes*
Koni PA, Khanna R, Chang MC, Tang MD, Kaczmarek LK, Schlichter LC, Flavell R. Compensatory Anion Currents in Kv1.3 Channel-deficient Thymocytes*. Journal Of Biological Chemistry 2003, 278: 39443-39451. PMID: 12878608, DOI: 10.1074/jbc.m304879200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBase SequenceCell DivisionChloride ChannelsDNAFemaleGene ExpressionIon TransportKv1.3 Potassium ChannelLymphocyte ActivationMaleMembrane PotentialsMiceMice, Inbred C57BLMice, KnockoutPatch-Clamp TechniquesPotassium ChannelsPotassium Channels, Voltage-GatedRNA, MessengerT-LymphocytesConceptsWild-type cellsKv1.3-/- micePotassium channel subunitsVoltage-gated potassium channelsMouse thymocyte subsetsChloride currentsChannel subunitsAnion currentsT-cell activation/proliferationVoltage-dependent potassium currentsVolume regulationCell proliferationThymocyte apoptosisT cell responsesCell-mediated cytotoxicityObvious defectsCell activation/proliferationImmune system defectsT cell proliferationActivation/proliferationPotassium channelsLymph nodesCompensatory effectLymphocyte typeKv1.3
2002
Localization of the Slack potassium channel in the rat central nervous system
Bhattacharjee A, Gan L, Kaczmarek LK. Localization of the Slack potassium channel in the rat central nervous system. The Journal Of Comparative Neurology 2002, 454: 241-254. PMID: 12442315, DOI: 10.1002/cne.10439.Peer-Reviewed Original ResearchConceptsRat central nervous systemSlack potassium channelsChannel subunitsRat brain slicesCentral nervous systemRat brain membranesOnly cortical regionDeep cerebellar nucleiGiant presynaptic terminalSlo subunitWestern blot analysisSubstantia nigraTrigeminal systemImmunohistochemical studyMedial nucleusOculomotor nucleusReticular formationBrain slicesFrontal cortexOlfactory bulbPresynaptic terminalsRed nucleusNervous systemCerebellar nucleiBrain membranes
2000
Modification of delayed rectifier potassium currents by the Kv9.1 potassium channel subunit
Richardson F, Kaczmarek L. Modification of delayed rectifier potassium currents by the Kv9.1 potassium channel subunit. Hearing Research 2000, 147: 21-30. PMID: 10962170, DOI: 10.1016/s0378-5955(00)00117-9.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAuditory PathwaysComputer SimulationDelayed Rectifier Potassium ChannelsEvoked Potentials, AuditoryFemaleHumansIn Vitro TechniquesMembrane PotentialsModels, NeurologicalNeuronsOocytesPotassium ChannelsPotassium Channels, Voltage-GatedRatsRecombinant ProteinsShab Potassium ChannelsXenopus laevisConceptsRectifier potassium currentPotassium channel subunitsChannel subunitsPotassium currentInward currentsInhibition of firingHigh-frequency stimulationVariety of neuronsPotassium channel alpha subunitChannel alpha subunitFrequency stimulationAuditory pathwayInferior colliculusSustained depolarizationAction potentialsModel neuronsFiring patternsKv9.1NeuronsPotassium channelsAmplitude of currentsKv2.1Sound stimuliRate of activationTetraethyl ammonium ions
1998
Depolarization Selectively Increases the Expression of the Kv3.1 Potassium Channel in Developing Inferior Colliculus Neurons
Liu S, Kaczmarek L. Depolarization Selectively Increases the Expression of the Kv3.1 Potassium Channel in Developing Inferior Colliculus Neurons. Journal Of Neuroscience 1998, 18: 8758-8769. PMID: 9786983, PMCID: PMC6793528, DOI: 10.1523/jneurosci.18-21-08758.1998.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsAnimals, NewbornCalciumGene Expression Regulation, DevelopmentalIn Vitro TechniquesInferior ColliculiMembrane PotentialsNeuropeptidesPatch-Clamp TechniquesPotassiumPotassium ChannelsPotassium Channels, Voltage-GatedRatsRats, Sprague-DawleyRNA, MessengerShaw Potassium ChannelsConceptsInferior colliculus neuronsOnset of hearingColliculus neuronsCalcium influxChannel subunitsPotassium currentAction potentialsElevated external potassium concentrationCalcium channel blockersDepolarization-induced increaseSpontaneous neuronal activityNoninactivating potassium currentKv3.1 potassium channelVoltage-clamp experimentsChannel blockersNeuronal excitabilityElevated potassiumAuditory neuronsNeuronal activityExternal potassium concentrationExternal potassium ionsNeuronsPotassium channelsMRNA levelsMarked increaseFormation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits
Joiner W, Tang M, Wang L, Dworetzky S, Boissard C, Gan L, Gribkoff V, Kaczmarek L. Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nature Neuroscience 1998, 1: 462-469. PMID: 10196543, DOI: 10.1038/2176.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCaenorhabditis elegansCaenorhabditis elegans ProteinsElectric ConductivityIntermediate-Conductance Calcium-Activated Potassium ChannelsIsomerismLarge-Conductance Calcium-Activated Potassium ChannelsMolecular Sequence DataNerve Tissue ProteinsPotassium ChannelsPotassium Channels, Calcium-ActivatedPotassium Channels, Sodium-ActivatedConceptsCalcium-activated potassium channelsIntracellular calciumNervous systemIntermediate-conductance calcium-activated potassium channelsPotassium channelsLarge-conductance calcium-activated potassium channelsControl of excitabilitySlo subunitIntermediate conductance channelPotassium channel genesPharmacological propertiesIntermediate conductanceCytoplasmic calciumChannel subunitsSlo channelsSlack channelsChannel genesSingle-channel conductanceUnitary conductanceCalciumExcitabilitySLOSecretion