Featured Publications
An Epilepsy-Associated KCNT1 Mutation Enhances Excitability of Human iPSC-Derived Neurons by Increasing Slack KNa Currents
Quraishi IH, Stern S, Mangan KP, Zhang Y, Ali SR, Mercier MR, Marchetto MC, McLachlan MJ, Jones EM, Gage FH, Kaczmarek LK. An Epilepsy-Associated KCNT1 Mutation Enhances Excitability of Human iPSC-Derived Neurons by Increasing Slack KNa Currents. Journal Of Neuroscience 2019, 39: 7438-7449. PMID: 31350261, PMCID: PMC6759030, DOI: 10.1523/jneurosci.1628-18.2019.Peer-Reviewed Original ResearchConceptsSevere epileptic encephalopathyAction potentialsEpileptic encephalopathyFiring rateCurrent-clamp recordingsSodium-activated potassium channelsMaximal firing rateIntensity of firingMean firing rateKCNT1 mutationsCortical neuronsCell-autonomous mechanismsEffective treatmentHuman neuronsPotassium currentActive neuronsNeuronsPotassium channelsCompensatory changesDisease-causing mutationsHyperexcitabilityHuman iPSCEncephalopathyExcitabilityStem cells
2024
Disease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons
Wu J, Quraishi I, Zhang Y, Bromwich M, Kaczmarek L. Disease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons. Cell Reports 2024, 43: 113904. PMID: 38457342, PMCID: PMC11013952, DOI: 10.1016/j.celrep.2024.113904.Peer-Reviewed Original ResearchInhibitory neuronsRegulation of neuronal excitabilityPotassium channel mutationsVoltage-dependent sodiumInhibitory cortical neuronsGain-of-function mutationsAxon initial segmentKCNT1 geneNeuronal excitabilityChannel subunitsChannel mutationsNetwork hyperexcitabilityMouse modelNeuron typesCortical neuronsTreat epilepsyNeuronsExcitable neuronsNeurological disordersSevere intellectual disabilityMutationsInitial segmentKCNT1ExpressionHyperexcitability
2023
Nonquantal transmission at the vestibular hair cell–calyx synapse: KLV currents modulate fast electrical and slow K+ potentials
Govindaraju A, Quraishi I, Lysakowski A, Eatock R, Raphael R. Nonquantal transmission at the vestibular hair cell–calyx synapse: KLV currents modulate fast electrical and slow K+ potentials. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2207466120. PMID: 36595693, PMCID: PMC9926171, DOI: 10.1073/pnas.2207466120.Peer-Reviewed Original ResearchConceptsNonquantal transmissionAfferent neuronsHair cellsPresynaptic hair cellsPrimary afferent neuronsAction potential latencyVestibular hair cellsCalyx afferentsPotential latencySynaptic terminalsVestibular signalsSynaptic cleftNeural circuitsHead positionPossible roleGap junctionsNeuronsSynapsesSynapseCleftCellsCalyxAfferents