2024
Assignment of chlorophyll d in the ChlD1 site of the electron transfer chain of far-red light acclimated photosystem II supported by MCCE binding calculations
Gisriel C, Ranepura G, Brudvig G, Gunner M. Assignment of chlorophyll d in the ChlD1 site of the electron transfer chain of far-red light acclimated photosystem II supported by MCCE binding calculations. Biochimica Et Biophysica Acta (BBA) - Bioenergetics 2024, 1865: 149496. PMID: 39038640, DOI: 10.1016/j.bbabio.2024.149496.Peer-Reviewed Original ResearchMutation-induced shift of the photosystem II active site reveals insight into conserved water channels
Flesher D, Liu J, Wang J, Gisriel C, Yang K, Batista V, Debus R, Brudvig G. Mutation-induced shift of the photosystem II active site reveals insight into conserved water channels. Journal Of Biological Chemistry 2024, 300: 107475. PMID: 38879008, PMCID: PMC11294709, DOI: 10.1016/j.jbc.2024.107475.Peer-Reviewed Original ResearchOxygen-evolving complexPhotosystem II active sitePhotosystem IIJahn-Teller distortionPhotosystem II complexD1-Asp170Jahn-TellerResolution cryo-EM structureMutation-induced structural changesCryo-EM structureMagnetic propertiesD1 subunitActive siteOxygenic photosynthesisMutagenesis studiesLight-driven water oxidationSpectroscopic propertiesStructural basisSpectroscopic dataAmino acidsWater oxidation mechanismPhotosystemMutationsMutation-induced shiftWater oxidationWater Ligands Regulate the Redox Leveling Mechanism of the Oxygen-Evolving Complex of the Photosystem II
Liu J, Yang K, Long Z, Armstrong W, Brudvig G, Batista V. Water Ligands Regulate the Redox Leveling Mechanism of the Oxygen-Evolving Complex of the Photosystem II. Journal Of The American Chemical Society 2024, 146: 15986-15999. PMID: 38833517, DOI: 10.1021/jacs.4c02926.Peer-Reviewed Original ResearchProton-coupled electron transferOxygen-evolving complexWater insertionWater ligandsCatalytic cycleMolecular dynamicsO-O bondQuantum mechanics/molecular mechanicsConformational changesFree energy changeLigand environmentElectron transferLigand exchangePhotosystem IIOxygen evolutionWater binding mechanismsEnergy changeLigandBinding mechanismAqueous environmentRedoxWater bindingLigand bindingCatalystIsomerizationPhotochemical Oxidation of Substrate Water Analogs and Halides by Photosystem II
Shin J, Kanyo J, Debus R, Brudvig G. Photochemical Oxidation of Substrate Water Analogs and Halides by Photosystem II. Advanced Energy Materials 2024, 14 DOI: 10.1002/aenm.202401292.Peer-Reviewed Original ResearchWater oxidation catalysisRedox-active cofactorsOxidation catalysisWater oxidationSubstrate photooxidationProtein-pigment complexesRedox chemistryPhotochemical reductionSubstrate waterNative PSIISmall moleculesO 2 evolutionHalidesO-2ChloridePhotooxidationPhotochemical oxidationPSII complexesBound chlorideKinetic profilesPhotosystem IISubstratePutative water channelsCatalystCatalysisOccupancy Analysis of Water Molecules inside Channels within 25 Å Radius of the Oxygen-Evolving Center of Photosystem II in Molecular Dynamics Simulations
Kaur D, Reiss K, Wang J, Batista V, Brudvig G, Gunner M. Occupancy Analysis of Water Molecules inside Channels within 25 Å Radius of the Oxygen-Evolving Center of Photosystem II in Molecular Dynamics Simulations. The Journal Of Physical Chemistry B 2024, 128: 2236-2248. PMID: 38377592, DOI: 10.1021/acs.jpcb.3c05367.Peer-Reviewed Original ResearchOxygen-evolving centerWater moleculesPhotosystem IIPositions of water moleculesAnalysis of water moleculesCatalyze water oxidationHydrogen bond networkOccupancy of water moleculesMolecular dynamics simulationsD1-D61Electron density mapsMolecular dynamics analysisProton transferWater oxidationCrystallographic dataIce latticeMD simulationsMolecular dynamicsStructural transitionDynamics simulationsSubstrate waterOxygen-evolvingRoom temperatureProtein residuesMoleculesMapping the Oxygens in the Oxygen-Evolving Complex of Photosystem II by Their Nucleophilicity Using Quantum Descriptors
Amin M, Kaur D, Brudvig G, Brooks B. Mapping the Oxygens in the Oxygen-Evolving Complex of Photosystem II by Their Nucleophilicity Using Quantum Descriptors. Journal Of Chemical Theory And Computation 2024, 20: 1414-1422. PMID: 38306696, DOI: 10.1021/acs.jctc.3c00926.Peer-Reviewed Original ResearchConceptual density functional theoryOxygen-evolving complexQuantum descriptorsBridging oxygenSolar energy to chemical energyEnergy to chemical energyWater splitting reactionOxygen-evolving complex of photosystem IIReactivity of moleculesDensity functional theoryComplex of photosystem IIDual descriptorFukui functionsNucleophilic attackTerminal waterArtificial catalystsAtomic contributionsModel compoundsFunctional theoryReaction mechanismNucleophilesPhotosystem IIElectrophilesMn4Chemical energy
2023
Redox leveling of the Kok cycle of photosystem II established by water ligand binding to the oxygen evolving complex
Liu J, Yang K, Brudvig G, Batista V. Redox leveling of the Kok cycle of photosystem II established by water ligand binding to the oxygen evolving complex. Biophysical Journal 2023, 122: 199a-200a. DOI: 10.1016/j.bpj.2022.11.1210.Peer-Reviewed Original Research
2022
Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light
Gisriel C, Shen G, Flesher D, Kurashov V, Golbeck J, Brudvig G, Amin M, Bryant D. Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light. Journal Of Biological Chemistry 2022, 299: 102815. PMID: 36549647, PMCID: PMC9843442, DOI: 10.1016/j.jbc.2022.102815.Peer-Reviewed Original ResearchConceptsFar-red light photoacclimationChl dFar-red lightPhotosystem IIChl fWater-splitting enzymeEnergy transferDimeric photosystem II complexesCryo-EM structurePhotosystem II complexElectron transfer chainWater oxidationChl f moleculesDimeric complexStructure-function relationshipsPhotosynthetic machineryPsbH subunitProtein environmentMonomeric structureOxygenic photosynthesisVisible lightFormyl moietyF moleculesAccessory pigmentsTransfer chain
2021
Toward understanding the S2-S3 transition in the Kok cycle of Photosystem II: Lessons from Sr-substituted structure
Amin M, Kaur D, Gunner M, Brudvig G. Toward understanding the S2-S3 transition in the Kok cycle of Photosystem II: Lessons from Sr-substituted structure. Inorganic Chemistry Communications 2021, 133: 108890. DOI: 10.1016/j.inoche.2021.108890.Peer-Reviewed Original ResearchDensity functional theoryS3 transitionPhotosystem IIWater oxidation mechanismS2-S3 transitionKok cycleOxidation mechanismContinuum electrostaticsHydrogen fuelFunctional theoryS2 stateSolar energyArtificial systemsCatalystDeprotonationWaterMn4CalculationsElectrostaticsSr2OxygenEnergeticsTransitionFuelStructure8.22 Oxygen Evolution of Photosystem II
Huang H, Brudvig G. 8.22 Oxygen Evolution of Photosystem II. 2021, 569-588. DOI: 10.1016/b978-0-12-409547-2.14871-1.Peer-Reviewed Original ResearchProtein complex photosystem IIWater oxidation reactionPhotosystem IIWater oxidation mechanismOxygen-evolving complexSolar energy storageNatural photosynthesisKey reactionOxygen evolutionEnergy storageReactionPhotosynthesisCurrent knowledgeDetailed mechanismEssential componentGlobal scaleComplexesMechanism
2020
Cryo-EM Structure of Monomeric Photosystem II from Synechocystis sp. PCC 6803 Lacking the Water-Oxidation Complex
Gisriel C, Zhou K, Huang H, Debus R, Xiong Y, Brudvig G. Cryo-EM Structure of Monomeric Photosystem II from Synechocystis sp. PCC 6803 Lacking the Water-Oxidation Complex. Joule 2020, 4: 2131-2148. DOI: 10.1016/j.joule.2020.07.016.Peer-Reviewed Original ResearchOxygen-evolving complexPhotosystem II enzymeWater oxidation complexWater oxidationMetal clustersMechanism of photoactivationActive siteMonomeric photosystem IIPhotosystem IICryo-EM structureStructural rearrangementsComplexesPhotoactivationSynechocystis spPeripheral subunitsCationsComputational techniquesOxidationOverall biogenesisStructureMesophilic cyanobacteriumOxygenPCC 6803II enzymesPSIIThe Mechanism of Substrate Delivery and Activation in the Solar Water Oxidation Reaction of Photosystem II
Lakshmi K, Kalendra V, Banerjee G, Ghosh I, Yang K, Batista V, Brudvig G. The Mechanism of Substrate Delivery and Activation in the Solar Water Oxidation Reaction of Photosystem II. Biophysical Journal 2020, 118: 610a. DOI: 10.1016/j.bpj.2019.11.3292.Peer-Reviewed Original Research
2017
Alternative Electron Acceptors for Photosystem II
Wiwczar J, Brudvig G. Alternative Electron Acceptors for Photosystem II. 2017, 51-66. DOI: 10.1007/978-3-319-48873-8_4.Peer-Reviewed Original ResearchElectron acceptorPhotosystem IIPhotochemical water oxidationElectron acceptor moleculesCobalt coordination complexesElectron acceptor sideElectron transfer pathwayRedox midpoint potentialAlternative electron transfer pathwaysCoordination complexesWater oxidationElectron transferMolecular oxygenMidpoint potentialCation exchangeExogenous electron acceptorsOxygenic photosynthetic organismsAcceptor sidePhotosynthetic electron transport chainAcceptorEnergy applicationsAlternative electron acceptorsThylakoid membranesCytochrome c.Photosynthetic organisms
2015
Mechanism of Manganese-Catalyzed Oxygen Evolution from Experimental and Theoretical Analyses of 18O Kinetic Isotope Effects
Khan S, Yang K, Ertem M, Batista V, Brudvig G. Mechanism of Manganese-Catalyzed Oxygen Evolution from Experimental and Theoretical Analyses of 18O Kinetic Isotope Effects. ACS Catalysis 2015, 5: 7104-7113. DOI: 10.1021/acscatal.5b01976.Peer-Reviewed Original ResearchBiomimetic oxomanganese complexesO2 evolutionOxomanganese complexesElusive reaction intermediatesKinetic oxygen isotope effectO2-evolving complexPhotosystem IIFirst bindsTurnover conditionsPrevious kinetic studiesComplexesOxygen evolutionComplete mechanismEvolutionMechanismSpeciesBindsStrong evidenceIntermediatesTurnoverHighest barrier stepKinetic isotope effects
2014
Structural Studies of Oxomanganese Complexes for Water Oxidation Catalysis
Rivalta I, Brudvig G, Batista V. Structural Studies of Oxomanganese Complexes for Water Oxidation Catalysis. 2014, 1-14. DOI: 10.1002/9781118698648.ch1.Peer-Reviewed Original ResearchOxygen-evolving complexBiomimetic oxomanganese complexesOxomanganese complexesDensity functional theoryQuantum mechanics/molecular mechanics (QM/MM) hybrid methodsHigh-resolution spectroscopyPhotosystem IIStructure of PSIIX-ray absorption fine structure spectraX-ray radiationExtended X-ray absorption fine structure (EXAFS) spectraProteinaceous side chainsWater oxidation catalysisArtificial photosynthetic devicesFine structure spectraO bond formationWater splitting mechanismX-ray crystallographyOxomanganese clusterResolution spectroscopyX-ray diffraction dataSemiconductor surfacesOxidation catalysisPhotosynthetic devicesX-ray model
2013
Water oxidation chemistry of photosystem II
Brudvig G. Water oxidation chemistry of photosystem II. The FASEB Journal 2013, 27: 98.1-98.1. DOI: 10.1096/fasebj.27.1_supplement.98.1.Peer-Reviewed Original ResearchOxygen-evolving complexWater oxidation chemistryOxidation chemistryCrystal structurePhotosystem IISubstrate water moleculesRedox-active tyrosinesX-ray crystal structureFour-electron oxidationIntermediate oxidation statesSolar fuel productionSignificant side reactionsSpecific redox stateCyanobacterial photosystem IIDesign of materialsInorganic chemistryX-ray crystallographic informationRedox stateOxidation stateWater moleculesCatalytic cycleENDOR spectroscopySide reactionsChemical problemsSpectroscopic data3.15 Complex Systems: Photosynthesis
Pokhrel R, Brudvig G. 3.15 Complex Systems: Photosynthesis. 2013, 385-422. DOI: 10.1016/b978-0-08-097774-4.00313-2.Peer-Reviewed Original ResearchOxygen-evolving complexQuantum mechanics/molecular mechanicsPhotosystem IIOO bond formationDensity functional theory calculationsComplete catalytic cycleFunctional theory calculationsProton exit pathwayIron-sulfur centersMetal centerNatural photosynthesisModel complexesCatalytic cycleBond formationMolecular mechanicsFunctional mimicsElectronic characterizationTheory calculationsRole of chlorideOxygenic photosynthesisComplexesDetailed mechanismExit pathwayHydrogenasesPlastocyaninComputational Studies of the Oxygen-Evolving Complex of Photosystem II and Biomimetic Oxomanganese Complexes for Renewable Energy Applications
Rivalta I, Brudvig G, Batista V. Computational Studies of the Oxygen-Evolving Complex of Photosystem II and Biomimetic Oxomanganese Complexes for Renewable Energy Applications. ACS Symposium Series 2013, 1133: 203-215. DOI: 10.1021/bk-2013-1133.ch011.Peer-Reviewed Original Research
2011
Chloride Regulation of Enzyme Turnover: Application to the Role of Chloride in Photosystem II
Pokhrel R, McConnell IL, Brudvig GW. Chloride Regulation of Enzyme Turnover: Application to the Role of Chloride in Photosystem II. Biochemistry 2011, 50: 2725-2734. PMID: 21366335, DOI: 10.1021/bi2000388.Peer-Reviewed Original ResearchConceptsOxygen-evolving complexPhotosystem IICatalytic residuesChloride-binding siteRecent structural evidenceCyanobacterial photosystem IISalt bridgeEnzyme-substrate complexΑ-amylaseResidue crucialConformational shiftS-state cycleLys residuesCarboxylate residuesEnzyme turnoverChloride regulationResiduesD61Structural evidenceManganese clusterEnzymeBindingD1Potential mechanismsArgAnodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors
Blakemore J, Schley N, Olack G, Incarvito C, Brudvig G, Crabtree R. Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors. Chemical Science 2011, 2: 94-98. DOI: 10.1039/c0sc00418a.Peer-Reviewed Original ResearchWater oxidation catalystsOrganometallic precursorsAnodic depositionRobust water oxidation catalystsLight-driven oxidationInorganic heterogeneous catalystsArtificial photosynthesisWater oxidationCatalyst materialsHeterogeneous catalystsFour-electronAqueous solutionCatalystPhotosystem IIOxidationPrecursorsSustainable sourceElectrodepositionIridiumDepositionMaterialsComplexesReactionOxygenAqua