Featured Publications
Neural effects of controllability as a key dimension of stress exposure
Cohodes EM, Odriozola P, Mandell JD, Caballero C, McCauley S, Zacharek SJ, Hodges HR, Haberman JT, Smith M, Thomas J, Meisner OC, Ellis CT, Hartley CA, Gee DG. Neural effects of controllability as a key dimension of stress exposure. Development And Psychopathology 2022, 35: 218-227. PMID: 35034670, DOI: 10.1017/s0954579421001498.Peer-Reviewed Original ResearchConceptsDorsal anterior insulaRight dorsal anterior insulaUncontrollable stress conditionUncontrollable stressStress exposureSex-matched participantsStressor controllabilityInitial exposureFunctional magnetic resonance imaging (fMRI) acquisitionSubsequent stress exposureNeural effectsAnterior insulaYoung adultsSubsequent stressorsPatterns of activityCross-species evidenceNeural correlatesSubsequent exposureExposureNeural underpinningsPresent studyParticipantsMagnetic resonance imaging (MRI) acquisitionAdaptive responseFMRI analysis
2024
Researching COVID to enhance recovery (RECOVER) pediatric study protocol: Rationale, objectives and design
Gross R, Thaweethai T, Rosenzweig E, Chan J, Chibnik L, Cicek M, Elliott A, Flaherman V, Foulkes A, Witvliet M, Gallagher R, Gennaro M, Jernigan T, Karlson E, Katz S, Kinser P, Kleinman L, Lamendola-Essel M, Milner J, Mohandas S, Mudumbi P, Newburger J, Rhee K, Salisbury A, Snowden J, Stein C, Stockwell M, Tantisira K, Thomason M, Truong D, Warburton D, Wood J, Ahmed S, Akerlundh A, Alshawabkeh A, Anderson B, Aschner J, Atz A, Aupperle R, Baker F, Balaraman V, Banerjee D, Barch D, Baskin-Sommers A, Bhuiyan, Bind M, Bogie A, Bradford T, Buchbinder N, Bueler E, Bükülmez H, Casey B, Chang L, Chrisant M, Clark D, Clifton R, Clouser K, Cottrell L, Cowan K, D’Sa V, Dapretto M, Dasgupta S, Dehority W, Dionne A, Dummer K, Elias M, Esquenazi-Karonika S, Evans D, Faustino E, Fiks A, Forsha D, Foxe J, Friedman N, Fry G, Gaur S, Gee D, Gray K, Handler S, Harahsheh A, Hasbani K, Heath A, Hebson C, Heitzeg M, Hester C, Hill S, Hobart-Porter L, Hong T, Horowitz C, Hsia D, Huentelman M, Hummel K, Irby K, Jacobus J, Jacoby V, Jone P, Kaelber D, Kasmarcak T, Kluko M, Kosut J, Laird A, Landeo-Gutierrez J, Lang S, Larson C, Lim P, Lisdahl K, McCrindle B, McCulloh R, McHugh K, Mendelsohn A, Metz T, Miller J, Mitchell E, Morgan L, Müller-Oehring E, Nahin E, Neale M, Ness-Cochinwala M, Nolan S, Oliveira C, Osakwe O, Oster M, Payne R, Portman M, Raissy H, Randall I, Rao S, Reeder H, Rosas J, Russell M, Sabati A, Sanil Y, Sato A, Schechter M, Selvarangan R, Tejtel S, Shakti D, Sharma K, Squeglia L, Srivastava S, Stevenson M, Szmuszkovicz J, Talavera-Barber M, Teufel R, Thacker D, Trachtenberg F, Udosen M, Warner M, Watson S, Werzberger A, Weyer J, Wood M, Yin H, Zempsky W, Zimmerman E, Dreyer B, Consortium O. Researching COVID to enhance recovery (RECOVER) pediatric study protocol: Rationale, objectives and design. PLOS ONE 2024, 19: e0285635. PMID: 38713673, PMCID: PMC11075869, DOI: 10.1371/journal.pone.0285635.Peer-Reviewed Original ResearchConceptsYoung adultsClinical courseAdolescent Brain Cognitive DevelopmentCaregiver-child pairsLong-term outcomesObservational cohort studyOutcomes of COVID-19De novo cohortAdolescent Brain Cognitive Development StudySociodemographic correlatesCommunity partnersBaseline assessmentLongitudinal follow-upPotential therapeutic interventionsPediatric protocolsCohort studyCollaborative partnershipsProspective cohortFollow-upStudy protocolFederal partnersNIH Researching COVIDLong-term outcomes of COVID-19Enhanced recoveryData collection
2022
Experimental evidence for a child‐to‐adolescent switch in human amygdala‐prefrontal cortex communication: A cross‐sectional pilot study
Gee DG, Hanson C, Caglar LR, Fareri DS, Gabard‐Durnam L, Mills‐Finnerty C, Goff B, Caldera CJ, Lumian DS, Flannery J, Hanson SJ, Tottenham N. Experimental evidence for a child‐to‐adolescent switch in human amygdala‐prefrontal cortex communication: A cross‐sectional pilot study. Developmental Science 2022, 25: e13238. PMID: 35080089, PMCID: PMC9232876, DOI: 10.1111/desc.13238.Peer-Reviewed Original ResearchConceptsCross-sectional pilot studyAge-related switchAmygdala reactivityPresent cross-sectional pilot studyPilot studyAnterior cingulate cortex activationDorsal anterior cingulate cortex (dACC) activationAmygdala connectivityCortex activationPrefrontal cortexDACC activationAmygdalaPrefrontal functionChildhoodPrefrontal engagementEmotional behaviorChildhood experiencesAdolescenceVentromedial PFCDACCOpposite effectBayesian network analysisActivationVmPFCReverse information flow
2021
Parental Buffering of Stress in the Time of COVID-19: Family-Level Factors May Moderate the Association Between Pandemic-Related Stress and Youth Symptomatology
Cohodes EM, McCauley S, Gee DG. Parental Buffering of Stress in the Time of COVID-19: Family-Level Factors May Moderate the Association Between Pandemic-Related Stress and Youth Symptomatology. Research On Child And Adolescent Psychopathology 2021, 49: 935-948. PMID: 33591457, PMCID: PMC7885749, DOI: 10.1007/s10802-020-00732-6.Peer-Reviewed Original ResearchConceptsPandemic-related stressChild symptomatologyAnxiety-related symptomatologyYouth symptomatologyFamily-level factorsCross-sectional study designCOVID-19-related stressYouth mental healthEffects of exposureParental bufferingStudy designSymptomatologyMental healthChildren's exposureParental reportsHigh levelsCOVID-19COVID-19 pandemicNegative emotionsGlobal pandemicDegree of stressExposureLight of evidenceHome routinesParenting stress
2017
Development of the emotional brain
Casey BJ, Heller AS, Gee DG, Cohen AO. Development of the emotional brain. Neuroscience Letters 2017, 693: 29-34. PMID: 29197573, PMCID: PMC5984129, DOI: 10.1016/j.neulet.2017.11.055.Peer-Reviewed Original ResearchConceptsEmotion reactivityEmotional brainCognitive control circuitryNeurobiological accountsEmotional developmentRecent imaging studiesSelf-RegulationSocial situationsNeural circuitryYoung adulthoodAdolescenceImaging studiesHierarchical changesCircuitryDynamic reorganizationSubcorticoBrainCascade of changesAdulthoodLimbicControl circuitrySituationInstantiationDevelopment
2016
Individual differences in frontolimbic circuitry and anxiety emerge with adolescent changes in endocannabinoid signaling across species
Gee DG, Fetcho RN, Jing D, Li A, Glatt CE, Drysdale AT, Cohen AO, Dellarco DV, Yang RR, Dale AM, Jernigan TL, Lee FS, Casey BJ, Jernigan T, San Diego U, McCabe C, San Diego U, Chang L, Hawaii U, Akshoomoff N, San Diego U, Newman E, San Diego U, Dale A, San Diego U, Core M, Ernst T, Hawaii U, Dale A, San Diego U, Van Zijl P, Kuperman J, San Diego U, Murray S, Bloss C, Schork N, Appelbaum M, San Diego U, Gamst A, San Diego U, Thompson W, San Diego U, Bartsch H, San Diego U, Jernigan T, Dale A, Akshoomoff N, Chang L, Ernst T, Keating B, Amaral D, Sowell E, Kaufmann W, Van Zijl P, Mostofsky S, Casey B, Ruberry E, Powers A, Rosen B, Kenet T, Frazier J, Kennedy D, University Y, Gruen J. Individual differences in frontolimbic circuitry and anxiety emerge with adolescent changes in endocannabinoid signaling across species. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 4500-4505. PMID: 27001846, PMCID: PMC4843434, DOI: 10.1073/pnas.1600013113.Peer-Reviewed Original ResearchConceptsFatty acid amide hydrolaseAnxiety-related behaviorGene expressionFrontolimbic circuitryEndocannabinoid signalingAnxiety disordersNeural circuit maturationPostnatal day 45Phenotypic differencesFrontoamygdala circuitryAnandamide levelsGenetic effectsAEA levelsBiological stateIndividual differencesCircuit maturationGenetic alterationsFAAH genotypeMouse modelDevelopmental neurobiologyLevels of analysisAdolescent changesDevelopmental windowAmide hydrolaseBrain circuitry
2015
Reliability of an fMRI paradigm for emotional processing in a multisite longitudinal study
Gee DG, McEwen SC, Forsyth JK, Haut KM, Bearden CE, Addington J, Goodyear B, Cadenhead KS, Mirzakhanian H, Cornblatt BA, Olvet D, Mathalon DH, McGlashan TH, Perkins DO, Belger A, Seidman LJ, Thermenos H, Tsuang MT, van Erp TG, Walker EF, Hamann S, Woods SW, Constable T, Cannon TD. Reliability of an fMRI paradigm for emotional processing in a multisite longitudinal study. Human Brain Mapping 2015, 36: 2558-2579. PMID: 25821147, PMCID: PMC4478164, DOI: 10.1002/hbm.22791.Peer-Reviewed Original ResearchConceptsFunctional magnetic resonance imaging (fMRI) taskBlood oxygen level-dependent (BOLD) signalFusiform gyrusRobust activationEmotion processing areasAnterior cingulate cortexLevel-dependent signalBrain-related changesMean activationExcellent reliabilityPatient groupRare conditionInferior frontal gyrusHealthy volunteersGeneral populationEmotion processing taskHealthy individualsCingulate cortexMultisite longitudinal studyConsecutive daysFrontal gyrusAmygdalaBrain activationMultisite studyMixed effects models
2010
Low frequency fluctuations reveal integrated and segregated processing among the cerebral hemispheres
Gee DG, Biswal BB, Kelly C, Stark DE, Margulies DS, Shehzad Z, Uddin LQ, Klein DF, Banich MT, Castellanos FX, Milham MP. Low frequency fluctuations reveal integrated and segregated processing among the cerebral hemispheres. NeuroImage 2010, 54: 517-527. PMID: 20570737, PMCID: PMC3134281, DOI: 10.1016/j.neuroimage.2010.05.073.Peer-Reviewed Original ResearchConceptsResting-state functional connectivityFunctional magnetic resonance imagingFunctional connectivityResting-state functional magnetic resonance imagingInterhemispheric interactionsResting-state fMRI scansSpontaneous low-frequency fluctuationsLow-frequency fluctuationsInterhemispheric processingMagnetic resonance imagingRSFC strengthCerebral hemispheresHomotopic regionsIntrahemispheric processingResonance imagingNegative connectivityEntire cerebrumConnectivity strengthFMRI scansHealthy participantsBOLD signalSegregated processingPresent studyOpposite hemisphereHemisphere