Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm
Jiang Y, Luo C, Wang J, Palaniyappan L, Chang X, Xiang S, Zhang J, Duan M, Huang H, Gaser C, Nemoto K, Miura K, Hashimoto R, Westlye L, Richard G, Fernandez-Cabello S, Parker N, Andreassen O, Kircher T, Nenadić I, Stein F, Thomas-Odenthal F, Teutenberg L, Usemann P, Dannlowski U, Hahn T, Grotegerd D, Meinert S, Lencer R, Tang Y, Zhang T, Li C, Yue W, Zhang Y, Yu X, Zhou E, Lin C, Tsai S, Rodrigue A, Glahn D, Pearlson G, Blangero J, Karuk A, Pomarol-Clotet E, Salvador R, Fuentes-Claramonte P, Garcia-León M, Spalletta G, Piras F, Vecchio D, Banaj N, Cheng J, Liu Z, Yang J, Gonul A, Uslu O, Burhanoglu B, Uyar Demir A, Rootes-Murdy K, Calhoun V, Sim K, Green M, Quidé Y, Chung Y, Kim W, Sponheim S, Demro C, Ramsay I, Iasevoli F, de Bartolomeis A, Barone A, Ciccarelli M, Brunetti A, Cocozza S, Pontillo G, Tranfa M, Park M, Kirschner M, Georgiadis F, Kaiser S, Van Rheenen T, Rossell S, Hughes M, Woods W, Carruthers S, Sumner P, Ringin E, Spaniel F, Skoch A, Tomecek D, Homan P, Homan S, Omlor W, Cecere G, Nguyen D, Preda A, Thomopoulos S, Jahanshad N, Cui L, Yao D, Thompson P, Turner J, van Erp T, Cheng W, Feng J. Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm. Nature Communications 2024, 15: 5996. PMID: 39013848, PMCID: PMC11252381, DOI: 10.1038/s41467-024-50267-3.Peer-Reviewed Original ResearchConceptsGray matter changesDisorder constructsEnlarged striatumPsychiatric conditionsMental disordersSubcortical regionsSchizophreniaBiological foundationsMatter changesBrain imagingStriatumDisordersBiological factorsIndividualsSubtypesHealthy subjectsCross-sectional brain imagingHippocampusTemporal trajectoriesInternational cohortSubgroup 2Subgroup 1SubgroupsBrain‐age prediction: Systematic evaluation of site effects, and sample age range and size
Yu Y, Cui H, Haas S, New F, Sanford N, Yu K, Zhan D, Yang G, Gao J, Wei D, Qiu J, Banaj N, Boomsma D, Breier A, Brodaty H, Buckner R, Buitelaar J, Cannon D, Caseras X, Clark V, Conrod P, Crivello F, Crone E, Dannlowski U, Davey C, de Haan L, de Zubicaray G, Di Giorgio A, Fisch L, Fisher S, Franke B, Glahn D, Grotegerd D, Gruber O, Gur R, Gur R, Hahn T, Harrison B, Hatton S, Hickie I, Pol H, Jamieson A, Jernigan T, Jiang J, Kalnin A, Kang S, Kochan N, Kraus A, Lagopoulos J, Lazaro L, McDonald B, McDonald C, McMahon K, Mwangi B, Piras F, Rodriguez‐Cruces R, Royer J, Sachdev P, Satterthwaite T, Saykin A, Schumann G, Sevaggi P, Smoller J, Soares J, Spalletta G, Tamnes C, Trollor J, Ent D, Vecchio D, Walter H, Wang Y, Weber B, Wen W, Wierenga L, Williams S, Wu M, Zunta‐Soares G, Bernhardt B, Thompson P, Frangou S, Ge R, Group E. Brain‐age prediction: Systematic evaluation of site effects, and sample age range and size. Human Brain Mapping 2024, 45: e26768. PMID: 38949537, PMCID: PMC11215839, DOI: 10.1002/hbm.26768.Peer-Reviewed Original ResearchConceptsBrain-aging modelBrain-age predictionBrain-ageDiscovery sampleBrain morphometric measuresStructural neuroimaging dataSamples of healthy individualsSample age rangeNeuroimaging metricsNeuroimaging dataHealthy individualsLongitudinal consistencyBrain developmentIndependent samplesAge varianceAge rangeBrainSample sizeAge binsMorphometry dataIndividualsHuman lifespanEmpirical examinationMeaningful measuresFindings