2024
Intranasal neomycin evokes broad-spectrum antiviral immunity in the upper respiratory tract
Mao T, Kim J, Peña-Hernández M, Valle G, Moriyama M, Luyten S, Ott I, Gomez-Calvo M, Gehlhausen J, Baker E, Israelow B, Slade M, Sharma L, Liu W, Ryu C, Korde A, Lee C, Monteiro V, Lucas C, Dong H, Yang Y, Initiative Y, Gopinath S, Wilen C, Palm N, Dela Cruz C, Iwasaki A, Vogels C, Hahn A, Chen N, Breban M, Koch T, Chaguza C, Tikhonova I, Castaldi C, Mane S, De Kumar B, Ferguson D, Kerantzas N, Peaper D, Landry M, Schulz W, Grubaugh N. Intranasal neomycin evokes broad-spectrum antiviral immunity in the upper respiratory tract. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2319566121. PMID: 38648490, PMCID: PMC11067057, DOI: 10.1073/pnas.2319566121.Peer-Reviewed Original ResearchConceptsInterferon-stimulated genesRespiratory infectionsStrains of influenza A virusTreatment of respiratory viral infectionsRespiratory virus infectionsInfluenza A virusMouse model of COVID-19Respiratory viral infectionsNeomycin treatmentExpression of interferon-stimulated genesUpper respiratory infectionInterferon-stimulated gene expressionLower respiratory infectionsBroad spectrum of diseasesAdministration of neomycinRespiratory viral diseasesDisease to patientsUpper respiratory tractIntranasal deliveryCongenic miceIntranasal applicationNasal mucosaSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2A virusIntestinal tuft cell immune privilege enables norovirus persistence
Strine M, Fagerberg E, Darcy P, Barrón G, Filler R, Alfajaro M, D'Angelo-Gavrish N, Wang F, Graziano V, Menasché B, Damo M, Wang Y, Howitt M, Lee S, Joshi N, Mucida D, Wilen C. Intestinal tuft cell immune privilege enables norovirus persistence. Science Immunology 2024, 9: eadi7038. PMID: 38517952, DOI: 10.1126/sciimmunol.adi7038.Peer-Reviewed Original ResearchConceptsCD8<sup>+</sup> T cellsIntestinal tuft cellsT cellsTufted cellsViral persistenceSite of viral persistenceChemosensory epithelial cellsNormal antigen presentationImmune-privileged nicheIntestinal stem cellsMemory phenotypeImmune privilegeImmune escapeReporter miceAntigen presentationChronic infectionCytotoxic capacityEpithelial cellsNorovirus infectionStem cellsCell interactionsInfectionCell survivalEnteric microbesCells
2023
IFN-λ derived from nonsusceptible enterocytes acts on tuft cells to limit persistent norovirus
Ingle H, Makimaa H, Aggarwal S, Deng H, Foster L, Li Y, Kennedy E, Peterson S, Wilen C, Lee S, Suthar M, Baldridge M. IFN-λ derived from nonsusceptible enterocytes acts on tuft cells to limit persistent norovirus. Science Advances 2023, 9: eadi2562. PMID: 37703370, PMCID: PMC10499323, DOI: 10.1126/sciadv.adi2562.Peer-Reviewed Original ResearchConceptsIntestinal epithelial cellsTuft cellsUninfected bystander cellsIFN-λ signalingSource of IFNImmune cellsIntestinal infectionsLeading causeViral gastroenteritisMNoVNorovirus pathogenesisCellular tropismPotent antiviralEpidemic viral gastroenteritisEpithelial cellsBystander cellsIFNNorovirusAntiviralsInfectionMurine norovirusIntercellular communicationPersistent strainsCellsVivoMurine Norovirus: Additional Protocols for Basic and Antiviral Studies
Wobus C, Peiper A, McSweeney A, Young V, Chaika M, Lane M, Lingemann M, Deerain J, Strine M, Alfajaro M, Helm E, Karst S, Mackenzie J, Taube S, Ward V, Wilen C. Murine Norovirus: Additional Protocols for Basic and Antiviral Studies. Current Protocols 2023, 3: e828. PMID: 37478303, PMCID: PMC10375541, DOI: 10.1002/cpz1.828.Peer-Reviewed Original ResearchPLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection
Xu D, Jiang W, Wu L, Gaudet R, Park E, Su M, Cheppali S, Cheemarla N, Kumar P, Uchil P, Grover J, Foxman E, Brown C, Stansfeld P, Bewersdorf J, Mothes W, Karatekin E, Wilen C, MacMicking J. PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection. Nature 2023, 619: 819-827. PMID: 37438530, PMCID: PMC10371867, DOI: 10.1038/s41586-023-06322-y.Peer-Reviewed Original ResearchConceptsC-terminal β-barrel domainSpike-mediated fusionCell-autonomous defenseLarge-scale exome sequencingΒ-barrel domainGenome-wide CRISPRSARS-CoV-2 infectionHost cell cytosolScramblase activityPhospholipid scramblaseLive SARS-CoV-2 infectionHuman lung epitheliumPLSCR1SARS-CoV-2 USASingle-molecule switchingSARS-CoV-2 variantsExome sequencingHuman populationRestriction factorsViral RNANew SARS-CoV-2 variantsSARS-CoV-2Robust activityLung epitheliumDefense factorsThe KDM6A-KMT2D-p300 axis regulates susceptibility to diverse coronaviruses by mediating viral receptor expression
Wei J, Alfajaro M, Cai W, Graziano V, Strine M, Filler R, Biering S, Sarnik S, Patel S, Menasche B, Compton S, Konermann S, Hsu P, Orchard R, Yan Q, Wilen C. The KDM6A-KMT2D-p300 axis regulates susceptibility to diverse coronaviruses by mediating viral receptor expression. PLOS Pathogens 2023, 19: e1011351. PMID: 37410700, PMCID: PMC10325096, DOI: 10.1371/journal.ppat.1011351.Peer-Reviewed Original ResearchConceptsMouse hepatitis virusReceptor expressionTherapeutic targetMERS-CoVMajor SARS-CoV-2 variantsPrimary human airwaySARS-CoV-2 variantsNovel therapeutic targetViral receptor expressionSARS-CoV-2Histone methyltransferase KMT2DIntestinal epithelial cellsCoronavirus SusceptibilityDiverse coronavirusesHistone demethylase KDM6ADPP4 expressionCoronavirus receptorsHost determinantsHepatitis virusHuman airwaysSARS-CoVSmall molecule inhibitionViral entryPotential drug targetsViral receptorsAge-associated features of norovirus infection analysed in mice
Kennedy E, Aggarwal S, Dhar A, Karst S, Wilen C, Baldridge M. Age-associated features of norovirus infection analysed in mice. Nature Microbiology 2023, 8: 1095-1107. PMID: 37188813, PMCID: PMC10484054, DOI: 10.1038/s41564-023-01383-1.Peer-Reviewed Original ResearchConceptsViral uptakeWild-type neonatal miceCortisone acetate administrationAdaptive immune responsesInterferon-stimulated gene expressionIntestinal tuft cellsSeverity of infectionAbsence of interferonAge-associated variabilityAge-associated featuresMNoV infectionAcetate administrationViral exposureAntibody responseEnteric infectionsNeonatal miceInfected damsNorovirus infectionHigh burdenImmune responsePersistent infectionViral RNA accumulationIleal absorptionJuvenile miceAdult mice
2022
Tuft-cell-intrinsic and -extrinsic mediators of norovirus tropism regulate viral immunity
Strine M, Alfajaro M, Graziano V, Song J, Hsieh L, Hill R, Guo J, VanDussen K, Orchard R, Baldridge M, Lee S, Wilen C. Tuft-cell-intrinsic and -extrinsic mediators of norovirus tropism regulate viral immunity. Cell Reports 2022, 41: 111593. PMID: 36351394, PMCID: PMC9662704, DOI: 10.1016/j.celrep.2022.111593.Peer-Reviewed Original ResearchCoronavirus Lung Infection Impairs Host Immunity against Secondary Bacterial Infection by Promoting Lysosomal Dysfunction.
Peng X, Kim J, Gupta G, Agaronyan K, Mankowski MC, Korde A, Takyar SS, Shin HJ, Habet V, Voth S, Audia JP, Chang D, Liu X, Wang L, Cai Y, Tian X, Ishibe S, Kang MJ, Compton S, Wilen CB, Dela Cruz CS, Sharma L. Coronavirus Lung Infection Impairs Host Immunity against Secondary Bacterial Infection by Promoting Lysosomal Dysfunction. The Journal Of Immunology 2022, 209: 1314-1322. PMID: 36165196, PMCID: PMC9523490, DOI: 10.4049/jimmunol.2200198.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Bacterial infectionsMouse modelCoronavirus infectionLysosomal dysfunctionMajor health care challengeLung immune cellsLung tissue damageSecondary bacterial infectionImpair host immunityIL-1β releaseHealth care challengesCell deathPyroptotic cell deathBacterial killing abilityIL-1βBacterial clearanceImmune cellsSecondary infectionHost immunityAlveolar macrophagesTissue damageΒ-coronavirusStructural cellsCare challengesGenome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection
Biering SB, Sarnik SA, Wang E, Zengel JR, Leist SR, Schäfer A, Sathyan V, Hawkins P, Okuda K, Tau C, Jangid AR, Duffy CV, Wei J, Gilmore RC, Alfajaro MM, Strine MS, Nguyenla X, Van Dis E, Catamura C, Yamashiro LH, Belk JA, Begeman A, Stark JC, Shon DJ, Fox DM, Ezzatpour S, Huang E, Olegario N, Rustagi A, Volmer AS, Livraghi-Butrico A, Wehri E, Behringer RR, Cheon DJ, Schaletzky J, Aguilar HC, Puschnik AS, Button B, Pinsky BA, Blish CA, Baric RS, O’Neal W, Bertozzi CR, Wilen CB, Boucher RC, Carette JE, Stanley SA, Harris E, Konermann S, Hsu PD. Genome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection. Nature Genetics 2022, 54: 1078-1089. PMID: 35879412, PMCID: PMC9355872, DOI: 10.1038/s41588-022-01131-x.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionHost factorsSARS-CoV-2 entry factors ACE2SARS-CoV-2-host interactionsSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Diverse respiratory virusesMild respiratory illnessRespiratory distress syndromeSARS-CoV-2 host factorsHost-directed therapeuticsSyndrome coronavirus 2Coronavirus disease 2019Human lung epithelial cellsRange of symptomsHost defense mechanismsLung epithelial cellsGenome-wide CRISPR knockoutDistress syndromeRespiratory virusesRespiratory illnessCoronavirus 2Cell cycle regulationHigh molecular weight glycoproteinsOmicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2
Fang Z, Peng L, Filler R, Suzuki K, McNamara A, Lin Q, Renauer PA, Yang L, Menasche B, Sanchez A, Ren P, Xiong Q, Strine M, Clark P, Lin C, Ko AI, Grubaugh ND, Wilen CB, Chen S. Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. Nature Communications 2022, 13: 3250. PMID: 35668119, PMCID: PMC9169595, DOI: 10.1038/s41467-022-30878-4.Peer-Reviewed Original ResearchConceptsHeterologous boosterSARS-CoV-2Antibody responseMRNA vaccinesMRNA vaccinationDelta variantOmicron variantType of vaccinationStrong antibody responseMRNA vaccine candidatesVaccine candidatesNeutralization potencyImmune evasionSARS-CoV.Two weeksComparable titersVaccinationVaccineTiters 10MiceOmicronWeeksWA-1LNP-mRNABoosterInflammasome activation in infected macrophages drives COVID-19 pathology
Sefik E, Qu R, Junqueira C, Kaffe E, Mirza H, Zhao J, Brewer JR, Han A, Steach HR, Israelow B, Blackburn HN, Velazquez SE, Chen YG, Halene S, Iwasaki A, Meffre E, Nussenzweig M, Lieberman J, Wilen CB, Kluger Y, Flavell RA. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 2022, 606: 585-593. PMID: 35483404, PMCID: PMC9288243, DOI: 10.1038/s41586-022-04802-1.Peer-Reviewed Original ResearchConceptsInflammasome activationLung inflammationInflammatory responseInfected macrophagesSARS-CoV-2 infectionHuman macrophagesChronic lung pathologyPersistent lung inflammationSevere COVID-19Immune inflammatory responseInflammatory cytokine productionHumanized mouse modelNLRP3 inflammasome pathwayCOVID-19 pathologyCOVID-19SARS-CoV-2Productive viral cycleHyperinflammatory stateChronic stageIL-18Cytokine productionInflammatory cytokinesLung pathologyInflammasome pathwayInterleukin-1Tuft cells are key mediators of interkingdom interactions at mucosal barrier surfaces
Strine MS, Wilen CB. Tuft cells are key mediators of interkingdom interactions at mucosal barrier surfaces. PLOS Pathogens 2022, 18: e1010318. PMID: 35271673, PMCID: PMC8912186, DOI: 10.1371/journal.ppat.1010318.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsInterkingdom interactionsTuft cellsCell biologyImmune responseMicrobial activationMicrobial sensingCell abundanceMucosal barrier surfacesAntiviral adaptive immune responsesType 2 immune responsesCell heterogeneityExquisite specificityMucosal barrier integrityAdaptive immune responsesMurine norovirusHuman healthKey orchestratorsMicrobial infectionsPathogenic bacteriaBroad intraFlavivirus replicationKey mediatorContext of coinfectionTissue repairImmune evasionHigh-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells
Chen JS, Chow RD, Song E, Mao T, Israelow B, Kamath K, Bozekowski J, Haynes WA, Filler RB, Menasche BL, Wei J, Alfajaro MM, Song W, Peng L, Carter L, Weinstein JS, Gowthaman U, Chen S, Craft J, Shon JC, Iwasaki A, Wilen CB, Eisenbarth SC. High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Science Immunology 2022, 7: eabl5652. PMID: 34914544, PMCID: PMC8977051, DOI: 10.1126/sciimmunol.abl5652.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionSARS-CoV-2Follicular helper cellsB cell responsesHelper cellsAntibody productionCell responsesSARS-CoV-2 vaccinationB-cell receptor sequencingSevere COVID-19Cell receptor sequencingIndependent antibodiesT cell-B cell interactionsViral inflammationAntiviral antibodiesImmunoglobulin class switchingVirus infectionGerminal centersViral infectionClonal repertoireInfectionAntibodiesClass switchingCOVID-19PatientsRestriction of Viral Replication, Rather than T Cell Immunopathology, Drives Lethality in Murine Norovirus CR6-Infected STAT1-Deficient Mice
Sharon AJ, Filyk HA, Fonseca NM, Simister RL, Filler RB, Yuen W, Hardman BK, Robinson HG, Seo JH, Rocha-Pereira J, Welch I, Neyts J, Wilen CB, Crowe SA, Osborne LC. Restriction of Viral Replication, Rather than T Cell Immunopathology, Drives Lethality in Murine Norovirus CR6-Infected STAT1-Deficient Mice. Journal Of Virology 2022, 96: e02065-21. PMID: 35107369, PMCID: PMC8941907, DOI: 10.1128/jvi.02065-21.Peer-Reviewed Original ResearchConceptsAntiviral T cell responsesT cell responsesSTAT1-deficient miceSystemic viral infectionCell responsesViral replicationViral infectionTissue damageViral-induced tissue damageVirus-induced tissue damageAltered T-cell responsesLimited viral replicationT cell immunopathologyOngoing inflammatory responseAdaptive immune cellsUncontrolled viral replicationBreakdown of toleranceImmune-mediated pathologyHost-directed mechanismViral componentsAntiviral CD4Lethal immunopathologyInfectious insultsImmune activationImmunological tolerance
2021
A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice
Mao T, Israelow B, Lucas C, Vogels CBF, Gomez-Calvo ML, Fedorova O, Breban MI, Menasche BL, Dong H, Linehan M, Alpert T, Anderson F, Earnest R, Fauver J, Kalinich C, Munyenyembe K, Ott I, Petrone M, Rothman J, Watkins A, Wilen C, Landry M, Grubaugh N, Pyle A, Iwasaki A. A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice. Journal Of Experimental Medicine 2021, 219: e20211818. PMID: 34757384, PMCID: PMC8590200, DOI: 10.1084/jem.20211818.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionChronic SARS-CoV-2 infectionVariants of concernLethal SARS-CoV-2 infectionPost-infection therapyLower respiratory tractPost-exposure treatmentType I interferonSARS-CoV-2Effective medical countermeasuresAdaptive immune systemBroad-spectrum antiviralsContext of infectionSingle doseRespiratory tractViral controlImmunodeficient miceSevere diseaseMouse modelI interferonViral infectionImmune systemInnate immunityDisease preventionConsiderable efficacyLive imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy
Ullah I, Prévost J, Ladinsky MS, Stone H, Lu M, Anand SP, Beaudoin-Bussières G, Symmes K, Benlarbi M, Ding S, Gasser R, Fink C, Chen Y, Tauzin A, Goyette G, Bourassa C, Medjahed H, Mack M, Chung K, Wilen CB, Dekaban GA, Dikeakos JD, Bruce EA, Kaufmann DE, Stamatatos L, McGuire AT, Richard J, Pazgier M, Bjorkman PJ, Mothes W, Finzi A, Kumar P, Uchil PD. Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity 2021, 54: 2143-2158.e15. PMID: 34453881, PMCID: PMC8372518, DOI: 10.1016/j.immuni.2021.08.015.Peer-Reviewed Original ResearchConceptsCOVID-19 convalescent subjectsSARS-CoV-2 infectionBioluminescence imagingK18-hACE2 miceLive bioluminescence imagingNatural killer cellsFc effector functionsSARS-CoV-2Convalescent subjectsKiller cellsPotent NAbsImmune protectionInflammatory responseEffector functionsNasal cavityNaB treatmentOptimal efficacyFc functionDepletion studiesMiceNAbsCOVID-19Direct neutralizationInfectionAntibodiesNorovirus evolution in immunodeficient mice reveals potentiated pathogenicity via a single nucleotide change in the viral capsid
Walker FC, Hassan E, Peterson ST, Rodgers R, Schriefer LA, Thompson CE, Li Y, Kalugotla G, Blum-Johnston C, Lawrence D, McCune BT, Graziano VR, Lushniak L, Lee S, Roth AN, Karst SM, Nice TJ, Miner JJ, Wilen CB, Baldridge MT. Norovirus evolution in immunodeficient mice reveals potentiated pathogenicity via a single nucleotide change in the viral capsid. PLOS Pathogens 2021, 17: e1009402. PMID: 33705489, PMCID: PMC7987144, DOI: 10.1371/journal.ppat.1009402.Peer-Reviewed Original ResearchConceptsNucleotide changesSingle nucleotide changeViral capsidAmino acid changesEvolutionary potentialIFN-competent hostsIntestinal myeloid cellsSelective pressureSingle nucleotideKey controllerNorovirus evolutionAcid changesLethal pathogenVirus growthEnhanced virulenceMice revealsIFN responseHigh replicationEnhanced recruitmentMyeloid cellsExtraintestinal disseminationIntestinal replicationReplicationPathogenicityCapsidCD300lf Conditional Knockout Mouse Reveals Strain-Specific Cellular Tropism of Murine Norovirus
Graziano VR, Alfajaro MM, Schmitz CO, Filler RB, Strine MS, Wei J, Hsieh LL, Baldridge MT, Nice TJ, Lee S, Orchard RC, Wilen CB. CD300lf Conditional Knockout Mouse Reveals Strain-Specific Cellular Tropism of Murine Norovirus. Journal Of Virology 2021, 95: 10.1128/jvi.01652-20. PMID: 33177207, PMCID: PMC7925115, DOI: 10.1128/jvi.01652-20.Peer-Reviewed Original ResearchConceptsConditional knockout miceIntestinal epithelial cellsCell tropismKnockout miceTuft cellsDendritic cellsMyelomonocytic cellsB cellsCellular tropismMurine norovirusEpithelial cellsViral RNA levelsInnate immune responseCause of gastroenteritisMNoV infectionCell typesViral loadGastrointestinal infectionsReceptor expressionImmunocompetent humansImmune responseCell type-specific rolesMouse modelIntestinal tissueMNoVNeuroinvasion of SARS-CoV-2 in human and mouse brain
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, Lu P, Weizman OE, Liu F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Fontes B, Ravindra NG, Van Dijk D, Mane S, Gunel M, Ring A, Kazmi SAJ, Zhang K, Wilen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwasaki A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal Of Experimental Medicine 2021, 218: e20202135. PMID: 33433624, PMCID: PMC7808299, DOI: 10.1084/jem.20202135.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Central nervous systemSARS-CoV-2 neuroinvasionImmune cell infiltratesCOVID-19 patientsType I interferon responseMultiple organ systemsCOVID-19I interferon responseHuman brain organoidsNeuroinvasive capacityCNS infectionsCell infiltrateNeuronal infectionPathological featuresCortical neuronsRespiratory diseaseDirect infectionCerebrospinal fluidNervous systemMouse brainInterferon responseOrgan systemsHuman ACE2Infection