Featured Publications
Induced protein degradation: an emerging drug discovery paradigm
Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nature Reviews Drug Discovery 2016, 16: 101-114. PMID: 27885283, PMCID: PMC5684876, DOI: 10.1038/nrd.2016.211.Peer-Reviewed Original ResearchConceptsProteolysis-targeting chimaerasProtein degradationUndruggable proteomeTarget protein degradationDifferent E3 ligasesInhibitor-based approachE3 ligasesDrug discovery platformProtein targetsProteomeDiscovery platformProtein expressionDrug discovery paradigmInhibition approachCell culturesDiscovery paradigmLigasesExact mechanismDegradationMouse modelDegradersProteinChimaerasPicomolar potencyChemical Genetic Control of Protein Levels: Selective in Vivo Targeted Degradation
Schneekloth JS, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, Crews CM. Chemical Genetic Control of Protein Levels: Selective in Vivo Targeted Degradation. Journal Of The American Chemical Society 2004, 126: 3748-3754. PMID: 15038727, DOI: 10.1021/ja039025z.Peer-Reviewed Original ResearchConceptsGreen fluorescent proteinProtein functionCell biological questionsGenetic model systemUbiquitin-proteasome pathwayChemical knockoutTargeted degradationBiological questionsProtein degradationGenetic strategiesGenetic controlGenetic lossTarget proteinsFluorescent proteinChimeric moleculesCultured cellsFKBP12 ligandsProteinProtein levelsModel systemWestern blotGeneral strategyFunction analysisVivo examplesFluorometric analysis
2024
Regulated induced proximity targeting chimeras—RIPTACs—A heterobifunctional small molecule strategy for cancer selective therapies
Raina K, Forbes C, Stronk R, Rappi J, Eastman K, Zaware N, Yu X, Li H, Bhardwaj A, Gerritz S, Forgione M, Hundt A, King M, Posner Z, Correia A, McGovern A, Puleo D, Chenard R, Mousseau J, Vergara J, Garvin E, Macaluso J, Martin M, Bassoli K, Jones K, Garcia M, Howard K, Yaggi M, Smith L, Chen J, Mayfield A, De Leon C, Hines J, Kayser-Bricker K, Crews C. Regulated induced proximity targeting chimeras—RIPTACs—A heterobifunctional small molecule strategy for cancer selective therapies. Cell Chemical Biology 2024, 31: 1490-1502.e42. PMID: 39116881, PMCID: PMC11371387, DOI: 10.1016/j.chembiol.2024.07.005.Peer-Reviewed Original ResearchProtein-protein interactionsTarget proteinsTernary complexChemical biology studiesExpressed intracellular proteinStable ternary complexAnti-proliferative responseEssential proteinsProtein proximityEffector ligandsIntracellular proteinsCDK inhibitorsTarget-expressing cellsHeterobifunctional small moleculesSmall moleculesCell survivalTumor cellsTherapeutic modalitiesProteinSelective therapySmall molecule strategiesLigandBiological studies
2022
PROTACs: past, present and future
Li K, Crews CM. PROTACs: past, present and future. Chemical Society Reviews 2022, 51: 5214-5236. PMID: 35671157, PMCID: PMC10237031, DOI: 10.1039/d2cs00193d.Peer-Reviewed Original ResearchConceptsProtein of interestProteolysis-targeting chimerasUbiquitin-proteasome systemE3 ubiquitin ligaseSmall molecule inhibitorsUbiquitin ligaseNonenzymatic functionProtein degradationHeterobifunctional moleculesDrug resistance mechanismsMolecule inhibitorsSubsequent degradationUbiquitinationLigasePromising therapeuticsProteinChimerasPotential toxicityDegradationMechanismHijacking Methyl Reader Proteins for Nuclear-Specific Protein Degradation
Nalawansha DA, Li K, Hines J, Crews CM. Hijacking Methyl Reader Proteins for Nuclear-Specific Protein Degradation. Journal Of The American Chemical Society 2022, 144: 5594-5605. PMID: 35311258, PMCID: PMC10331457, DOI: 10.1021/jacs.2c00874.Peer-Reviewed Original ResearchConceptsE3 ligase complexLigase complexProtein degradationReader proteinsMethyl readersE3 ligaseProteasomal degradationPROTAC designProtein levelsProteinLigand pairsDrug discovery paradigmPROTACsNatural mechanismGeneralizable approachComplexesDiscovery paradigmCUL4BRD2DegradationLigaseL3MBTL3FKBP12Biological evaluationPromising strategy
2021
Modulation of Phosphoprotein Activity by Phosphorylation Targeting Chimeras (PhosTACs)
Chen PH, Hu Z, An E, Okeke I, Zheng S, Luo X, Gong A, Jaime-Figueroa S, Crews CM. Modulation of Phosphoprotein Activity by Phosphorylation Targeting Chimeras (PhosTACs). ACS Chemical Biology 2021, 16: 2808-2815. PMID: 34780684, PMCID: PMC10437008, DOI: 10.1021/acschembio.1c00693.Peer-Reviewed Original ResearchConceptsSer/Thr phosphataseChemical biology approachPP2A holoenzymeProtein dephosphorylationBiology approachProtein substratesTranscriptional activationProtein phosphorylationCatalytic subunitCell biologyReporter geneProtein activityRetinoblastoma proteinOff-target effectsCritical proteinsDephosphorylationTernary complexPhosphorylationKinase inhibitorsFOXO3aPROTACsProteinChimerasPhosphataseDrug resistanceProteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation
Bond MJ, Crews CM. Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RSC Chemical Biology 2021, 2: 725-742. PMID: 34212149, PMCID: PMC8190915, DOI: 10.1039/d1cb00011j.Peer-Reviewed Original ResearchTargeted protein degradation: A promise for undruggable proteins
Samarasinghe KTG, Crews CM. Targeted protein degradation: A promise for undruggable proteins. Cell Chemical Biology 2021, 28: 934-951. PMID: 34004187, PMCID: PMC8286327, DOI: 10.1016/j.chembiol.2021.04.011.Peer-Reviewed Original ResearchConceptsProteolysis Targeting ChimerasUndruggable proteinsDisease-causing proteinsProtein degradation strategiesProteostasis mechanismsProtein homeostasisTranscription factorsProtein degradationHeterobifunctional moleculesProteinDegradation strategiesDisease initiationBiological effectsProteostasisDegradationPotential therapeutic modalityHomeostasisChimerasCellsAccumulationTargeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras
Samarasinghe KTG, Jaime-Figueroa S, Burgess M, Nalawansha DA, Dai K, Hu Z, Bebenek A, Holley SA, Crews CM. Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras. Cell Chemical Biology 2021, 28: 648-661.e5. PMID: 33836141, PMCID: PMC8524358, DOI: 10.1016/j.chembiol.2021.03.011.Peer-Reviewed Original ResearchConceptsTranscription factorsTargeted degradationTranscription factor degradationDNA-binding proteinsMultiple signaling pathwaysGeneralizable strategyDCas9 proteinProtein familyLigandable sitesProteasomal pathwaySignaling pathwaysOverexpression of oncoproteinsAberrant activationChimeric oligonucleotideProteinChimerasFactor degradationNF-κBPathwayHaloTagDegradationBrachyuryOverexpressionOncoproteinOligonucleotide
2017
Proteolysis–Targeting Chimeras: Harnessing the Ubiquitin–Proteasome System to Induce Degradation of Specific Target Proteins
Coleman K, Crews C. Proteolysis–Targeting Chimeras: Harnessing the Ubiquitin–Proteasome System to Induce Degradation of Specific Target Proteins. Annual Review Of Cancer Biology 2017, 2: 1-18. DOI: 10.1146/annurev-cancerbio-030617-050430.Peer-Reviewed Original ResearchProteolysis-targeting chimerasSpecific target proteinsUbiquitin-proteasome systemTarget proteinsNew cell biologyCancer Biology Volume 2Accumulation of proteinsProtein homeostasisUndruggable proteinsE3 ubiquitinMammalian cellsCell biologyProteasome complexFinal online publication dateProteinOnline publication dateProteolytic degradationMultistep processCancer cellsProteasome inhibitorsPathological proteinsNovel therapeuticsCentral roleBifunctional moleculesCells
2015
HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins
Buckley DL, Raina K, Darricarrere N, Hines J, Gustafson JL, Smith IE, Miah AH, Harling JD, Crews CM. HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chemical Biology 2015, 10: 1831-1837. PMID: 26070106, PMCID: PMC4629848, DOI: 10.1021/acschembio.5b00442.Peer-Reviewed Original ResearchConceptsChemical probesMore drug-like propertiesFusion proteinSmall-molecule PROTACsProtein degradationDrug-like propertiesE3 ligase ligandChemical genetic toolsSpecific E3 ligasesProtein of interestVHL ligandsHaloTag fusion proteinsE3 ligasesGenetic toolsHeterobifunctional moleculesNumerous proteinsHaloPROTACLigandsPROTACsProteinNovel classAttractive strategyDegradationProbeLigasesSpecific Induction of Golgi Stress by Targeted Protein Destabilization
Serebrenik Y, Crews C. Specific Induction of Golgi Stress by Targeted Protein Destabilization. The FASEB Journal 2015, 29 DOI: 10.1096/fasebj.29.1_supplement.723.5.Peer-Reviewed Original Research
2014
Small‐Molecule Control of Intracellular Protein Levels through Modulation of the Ubiquitin Proteasome System
Buckley DL, Crews CM. Small‐Molecule Control of Intracellular Protein Levels through Modulation of the Ubiquitin Proteasome System. Angewandte Chemie International Edition 2014, 53: 2312-2330. PMID: 24459094, PMCID: PMC4348030, DOI: 10.1002/anie.201307761.Peer-Reviewed Original ResearchConceptsSmall molecule modulatorsProtein levelsSmall-molecule probesUbiquitin-proteasome systemActivity of proteinsIntracellular protein levelsBiological probesProteasome systemProtein degradationUbiquitin-proteasomeProtein activitySmall moleculesMolecule controlDruggable targetsProteomeProteasomeTargeted fashionProteinRemaining majorityGlobal increaseProbeUPSMoleculesDegradationMultiple strategies
2013
A Bidirectional System for the Dynamic Small Molecule Control of Intracellular Fusion Proteins
Neklesa TK, Noblin DJ, Kuzin A, Lew S, Seetharaman J, Acton TB, Kornhaber G, Xiao R, Montelione G, Tong L, Crews CM. A Bidirectional System for the Dynamic Small Molecule Control of Intracellular Fusion Proteins. ACS Chemical Biology 2013, 8: 2293-2300. PMID: 23978068, PMCID: PMC4113957, DOI: 10.1021/cb400569k.Peer-Reviewed Original ResearchConceptsSmall molecule controlProtein functionFusion proteinMolecule controlIntracellular fusion proteinOncogenic H-RasCellular protein levelsProtein of interestProtein levelsSmall-molecule screenIntracellular protein levelsDose-dependent regulationCellular transformationH-RasMolecule screenPhysiological roleProteinTherapeutic targetDose-dependent mannerHydrophobic tagUbiquitinationBidirectional controlHSP70DehalogenaseRegulation
2012
Greasy tags for protein removal
Neklesa TK, Crews CM. Greasy tags for protein removal. Nature 2012, 487: 308-309. PMID: 22810693, DOI: 10.1038/487308a.Peer-Reviewed Original ResearchExploring Biology with Small Organic Molecules
Aberle N, Crews C. Exploring Biology with Small Organic Molecules. 2012, 10-25. DOI: 10.1017/cbo9781139021500.004.Peer-Reviewed Original ResearchChemical geneticsSmall moleculesSmall organic moleculesFundamental biological processesProtein of interestGood target specificityOrganic moleculesSemisynthetic moleculesChemical genomicsBiological processesTarget specificityMoleculesGeneticsBiologyVast arrayActive ingredientsChemistryGenomicsCertain basic elementsHuman medicineTherapeuticsCompoundsPlantsProteinPhenotype
2011
Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins
Neklesa TK, Tae HS, Schneekloth AR, Stulberg MJ, Corson TW, Sundberg TB, Raina K, Holley SA, Crews CM. Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins. Nature Chemical Biology 2011, 7: 538-543. PMID: 21725302, PMCID: PMC3139752, DOI: 10.1038/nchembio.597.Peer-Reviewed Original Research
2010
Chemical Inducers of Targeted Protein Degradation*
Raina K, Crews CM. Chemical Inducers of Targeted Protein Degradation*. Journal Of Biological Chemistry 2010, 285: 11057-11060. PMID: 20147751, PMCID: PMC2856979, DOI: 10.1074/jbc.r109.078105.Peer-Reviewed Original ResearchConceptsProtein degradationTargeted Protein DegradationPost-translational levelSubsequent phenotypic analysisProtein functionSelective gene inactivationCellular proteinsCellular phenotypesRNA interferenceGene inactivationSpecific proteinsChemical inducersPhenotypic analysisChemical inductionGenetic mutationsProteinGenesDegradationMutationsPhenotypeDecreased productionMRNAInducerInactivationInduction
2001
Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation
Sakamoto K, Kim K, Kumagai A, Mercurio F, Crews C, Deshaies R. Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 8554-8559. PMID: 11438690, PMCID: PMC37474, DOI: 10.1073/pnas.141230798.Peer-Reviewed Original ResearchConceptsSkp1-CullinF-box complexAttachment of ubiquitinUbiquitin-dependent proteolysisMetAP-2Disease-causing proteinsMethionine aminopeptidase 2SCF complexBeta-TRCPConditional inactivationBox complexChimeric moleculesProteinUbiquitinationIntracellular levelsUbiquitinChimeric compoundsAngiogenesis inhibitorsHRT1ComplexesPhosphopeptidesDomainProteolysisEnzymeDegradation
1998
The Antiproliferative Agent Didemnin B Uncompetitively Inhibits Palmitoyl Protein Thioesterase †
Meng L, Sin N, Crews C. The Antiproliferative Agent Didemnin B Uncompetitively Inhibits Palmitoyl Protein Thioesterase †. Biochemistry 1998, 37: 10488-10492. PMID: 9671519, DOI: 10.1021/bi9804479.Peer-Reviewed Original ResearchConceptsPalmitoyl-protein thioesterase 1GTP-binding proteinsDynamic protein palmitoylationDidemnin BPalmitoyl-protein thioesterasePalmitoyl proteinsProtein palmitoylationMembrane associationBaculoviral systemMyristoyl-CoAProduct bindsHa-rasBiochemical supportProteinEnzymatic activityBindingInhibition assaysDepalmitoylationPalmitoylationThioesteraseKinetic analysisInhibitionBindsRegulationUncompetitive mode