2024
A phase (Ph) 0/Ia study of brigimadlin concentration in brain tissue and a non-randomized, open-label, dose escalation study of brigimadlin in combination with radiotherapy (RT) in patients (pts) with newly diagnosed glioblastoma (GBM).
Sarkaria J, Mrugala M, Jaeckle K, Burns T, Vaubel R, Parney I, Chaichana K, Clement P, Martinez-Garcia M, Sepulveda Sanchez J, Omuro A, Pronk L, Ross H, Teufel M, Hesse R, Grempler R, Galanis E. A phase (Ph) 0/Ia study of brigimadlin concentration in brain tissue and a non-randomized, open-label, dose escalation study of brigimadlin in combination with radiotherapy (RT) in patients (pts) with newly diagnosed glioblastoma (GBM). Journal Of Clinical Oncology 2024, 42: 2017-2017. DOI: 10.1200/jco.2024.42.16_suppl.2017.Peer-Reviewed Original ResearchNon-contrast-enhancedOpen-labelContrast enhancementMGMT promoter unmethylated glioblastomaUnbound concentrationsCalculated unbound concentrationsNewly diagnosed GBMDose-escalation studyMaximum tolerated doseTumor cell apoptosisSingle-arm trialMDM2-p53 antagonistsRestore wild-typeBrain tissueUnmethylated glioblastomaBrain tumor tissueEscalation studyDiagnosed glioblastomaTolerated doseP53 target gene expressionPrimary endpointIDH-wtSolid tumorsTumor tissuesXenograft model
2021
T cell dysfunction in glioblastoma: a barrier and an opportunity for the development of successful immunotherapies
Jansen JA, Omuro A, Lucca LE. T cell dysfunction in glioblastoma: a barrier and an opportunity for the development of successful immunotherapies. Current Opinion In Neurology 2021, 34: 827-833. PMID: 34569985, PMCID: PMC8595795, DOI: 10.1097/wco.0000000000000988.Peer-Reviewed Original ResearchConceptsT cell dysfunctionTumor-infiltrating T cellsT cellsCell dysfunctionFuture immunotherapy strategiesCervical lymph nodesTumor-derived antigensImmune checkpoint blockadeCentral nervous systemHomeostatic brainSuccessful immunotherapyCheckpoint blockadeImmunotherapy strategiesLymph nodesTumor rejectionImmune surveillanceImmune responseMouse modelBrain tumorsLymphatic drainageNervous systemSolid tumorsDysfunctionSingle-cell RNA sequencingNatural history
2016
Evaluating Cancer of the Central Nervous System Through Next-Generation Sequencing of Cerebrospinal Fluid
Pentsova EI, Shah RH, Tang J, Boire A, You D, Briggs S, Omuro A, Lin X, Fleisher M, Grommes C, Panageas KS, Meng F, Selcuklu SD, Ogilvie S, Distefano N, Shagabayeva L, Rosenblum M, DeAngelis LM, Viale A, Mellinghoff IK, Berger MF. Evaluating Cancer of the Central Nervous System Through Next-Generation Sequencing of Cerebrospinal Fluid. Journal Of Clinical Oncology 2016, 34: 2404-2415. PMID: 27161972, PMCID: PMC4981784, DOI: 10.1200/jco.2016.66.6487.Peer-Reviewed Original ResearchConceptsCentral nervous systemPrimary brain tumorsCerebrospinal fluidCell-free DNACNS involvementBrain tumorsNervous systemCommon malignant primary brain tumorMalignant primary brain tumorRoutine lumbar punctureRelevant genomic alterationsCNS metastasesCNS cancersLumbar punctureCancer-associated genesTumor disseminationHarbored mutationsPatientsTumor evolutionSolid tumorsTumor progressionTumor tissueCancerLiquid biopsyTumors
2013
A phase I study of carboxyamidotriazole orotate (CTO) in of advanced solid tumors.
Sandler A, Taylor M, Urba W, Omuro A, Anderson B, Hansen D, Fisher B, Claeys A, Greathouse A, McLean S, Karmali R. A phase I study of carboxyamidotriazole orotate (CTO) in of advanced solid tumors. Journal Of Clinical Oncology 2013, 31: 2518-2518. DOI: 10.1200/jco.2013.31.15_suppl.2518.Peer-Reviewed Original ResearchAdvanced solid tumorsCell lung cancerStable diseaseLung cancerSolid tumorsSquamous cell lung cancerSmall cell lung cancerAdequate organ functionGrade 3 fatigueCreatine kinase elevationSquamous cell carcinomaColon tumor xenograftsAnti-tumor effectsAnti-invasive propertiesPharmacokinetic samplingAdverse eventsQTc prolongationCell carcinomaTumor responseEGFR mutationsPIK3CA mutationsMalignant gliomasLung adenocarcinomaTumor assessmentCT scanRare cell capture technology for the diagnosis of leptomeningeal metastasis in solid tumors
Nayak L, Fleisher M, Gonzalez-Espinoza R, Lin O, Panageas K, Reiner A, Liu CM, DeAngelis LM, Omuro A. Rare cell capture technology for the diagnosis of leptomeningeal metastasis in solid tumors. Neurology 2013, 80: 1598-1605. PMID: 23553479, PMCID: PMC3662321, DOI: 10.1212/wnl.0b013e31828f183f.Peer-Reviewed Original ResearchConceptsLeptomeningeal metastasesSolid tumorsCSF CTCsCSF pleocytosisLumbar punctureConventional cytologyRare cell capture technologyEarly diagnostic confirmationInitial MRI evaluationRepeat lumbar puncturePresence of CTCsClinical suspicionMRI evaluationPatient cohortDiagnostic confirmationCSF samplesPatientsTumorsCTC resultsTumor cellsPilot studyPleocytosisMetastasisCTCsPuncture
2009
Antiangiogenic Strategies for the Treatment of Gliomas
Bazzoli E, Omuro A. Antiangiogenic Strategies for the Treatment of Gliomas. 2009, 243-263. DOI: 10.1007/978-1-4419-0410-2_12.Peer-Reviewed Original ResearchMalignant gliomasAntiangiogenic strategiesVascular endothelial growth factor (VEGF) pathwayEndothelial growth factor pathwayNew antiangiogenic treatmentsRecurrent malignant gliomaProgression-free survivalVEGF monoclonal antibodyInitial clinical benefitTreatment of gliomaHigh response rateGrowth factor pathwaysDifferent molecular driversMost patientsSurvival benefitClinical benefitAntiangiogenic treatmentAntiangiogenic drugsAntiangiogenesis treatmentResponse rateSolid tumorsComplex biologic processClinical settingFactor pathwayGliomas