2021
PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans
Barak T, Ristori E, Ercan-Sencicek AG, Miyagishima DF, Nelson-Williams C, Dong W, Jin SC, Prendergast A, Armero W, Henegariu O, Erson-Omay EZ, Harmancı AS, Guy M, Gültekin B, Kilic D, Rai DK, Goc N, Aguilera SM, Gülez B, Altinok S, Ozcan K, Yarman Y, Coskun S, Sempou E, Deniz E, Hintzen J, Cox A, Fomchenko E, Jung SW, Ozturk AK, Louvi A, Bilgüvar K, Connolly ES, Khokha MK, Kahle KT, Yasuno K, Lifton RP, Mishra-Gorur K, Nicoli S, Günel M. PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans. Nature Medicine 2021, 27: 2165-2175. PMID: 34887573, PMCID: PMC8768030, DOI: 10.1038/s41591-021-01572-7.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesPeptidyl-prolyl cis-transPathogenesis of IAContribution of variantsCommon genetic variantsVertebrate modelDeleterious mutationsWnt activatorAssociation studiesWhole-exome sequencingSignificant enrichmentGenetic variantsWntAngiogenesis regulatorsMutationsGene mutationsBrain angiogenesisIntracranial aneurysm ruptureJMJD6AngiogenesisCerebrovascular morphologyCerebrovascular integrityIntracerebral hemorrhageAneurysm ruptureVariants
2017
The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes
Djenoune L, Desban L, Gomez J, Sternberg JR, Prendergast A, Langui D, Quan FB, Marnas H, Auer TO, Rio JP, Del Bene F, Bardet PL, Wyart C. The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes. Scientific Reports 2017, 7: 719. PMID: 28389647, PMCID: PMC5428266, DOI: 10.1038/s41598-017-00350-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedAxonsBiomarkersCarrier ProteinsCell DifferentiationCerebrospinal FluidFluorescent Antibody TechniqueGanglia, SpinalHomozygoteMutationNeuronsSensory Receptor CellsSignal TransductionSpinal CordSpinal Nerve RootsTRPP Cation ChannelsZebrafishZebrafish ProteinsConceptsDual developmental originDevelopmental originsDistinct progenitor domainsApical extensionDistinct functional subtypesDifferent developmental originsCerebrospinal fluid-contacting neuronsTranscription factorsMechanical cuesZebrafish larvaeDistinct functionsProgenitor domainsCentral nervous systemCell typesDistinct cascadesFunctional populationsDifferent functional propertiesCSF-cNsNovel avenuesPKD2L1 channelFunctional subtypesSensory neuronsNeuronal targetsDistinct functional populationsSpecific markers
2016
Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells
Suli A, Pujol R, Cunningham DE, Hailey DW, Prendergast A, Rubel EW, Raible DW. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells. Journal Of Cell Science 2016, 129: 2250-2260. PMID: 27103160, PMCID: PMC4920245, DOI: 10.1242/jcs.182592.Peer-Reviewed Original ResearchConceptsMechanosensory hair cellsHair cellsWild-type larvaeZebrafish lateral line systemElectron-dense structuresRibbon formationProper synapsisLateral line systemMature synapseSynaptic vesiclesHair cell innervationPost-synaptic elementsSensory cellsBasolateral membranePresynaptic zoneAfferent fibersSynaptic ribbonsFunctional synapsesBalance disordersCellsInnervationMutantsSynapsesLarvaeCytoplasm
2015
Reck enables cerebrovascular development by promoting canonical Wnt signaling
Ulrich F, Carretero-Ortega J, Menéndez J, Narvaez C, Sun B, Lancaster E, Pershad V, Trzaska S, Véliz E, Kamei M, Prendergast A, Kidd KR, Shaw KM, Castranova DA, Pham VN, Lo BD, Martin BL, Raible DW, Weinstein BM, Torres-Vázquez J. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development 2015, 143: 147-159. PMID: 26657775, PMCID: PMC4725199, DOI: 10.1242/dev.123059.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedBlood-Brain BarrierBrainCell LineCerebrovascular CirculationEndothelial CellsGPI-Linked ProteinsHuman Umbilical Vein Endothelial CellsHumansMutationNeovascularization, PhysiologicVascular Endothelial Growth Factor AWnt Signaling PathwayZebrafishZebrafish ProteinsConceptsCanonical WntForward genetic screenCysteine-rich proteinBlood-brain barrierVascular endothelial growth factorReversion-inducing cysteine-rich proteinGenetic screenLethal mutantsProper expressionEndothelial cellsInactivating lesionMolecular markersPivotal modulatorCancer biologyCultured endothelial cellsKazal motifsVascular biologyProtective interfaceMutantsBrain blood vesselsEndothelial growth factorWntBBB formationBiologyRECK
2010
Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest
Curran K, Lister JA, Kunkel GR, Prendergast A, Parichy DM, Raible DW. Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest. Developmental Biology 2010, 344: 107-118. PMID: 20460180, PMCID: PMC2909359, DOI: 10.1016/j.ydbio.2010.04.023.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedCell LineageForkhead Transcription FactorsGene Expression Regulation, DevelopmentalMelanocytesMicrophthalmia-Associated Transcription FactorMicroscopy, FluorescenceModels, BiologicalModels, GeneticMutationNeural CrestPhylogenyPigmentationZebrafishZebrafish ProteinsConceptsIridophore developmentPigment cellsCell fate plasticityZebrafish neural crestCell fate decisionsTranscription factor MITFCell lineage analysisNeural crest cellsIridescent iridophoresBlack melanophoresYellow xanthophoresMelanophore developmentFate decisionsFate plasticityTranscriptional switchDouble mutantTractable systemDanio rerioLineage analysisMelanoblast markerCrest cellsKey regulatorFoxD3Neural crestIridophores