2022
Phenotyping Zebrafish Mutant Models to Assess Candidate Genes Associated with Aortic Aneurysm
Prendergast A, Ziganshin BA, Papanikolaou D, Zafar MA, Nicoli S, Mukherjee S, Elefteriades JA. Phenotyping Zebrafish Mutant Models to Assess Candidate Genes Associated with Aortic Aneurysm. Genes 2022, 13: 123. PMID: 35052463, PMCID: PMC8775119, DOI: 10.3390/genes13010123.Peer-Reviewed Original ResearchConceptsAortic aneurysmSkeletal abnormalitiesThoracic aortic aneurysmWhole-exome sequencingDirect microscopic assessmentSilico genetic analysisVisualized abnormalitiesTAA patientsClinical managementGeneral populationClinical practiceRoutine assessmentClinical testingCell countEvidence-based decisionsUnknown significanceUncertain significanceExperimental modelPilot studyExome sequencingAbnormalitiesMicroscopic assessmentPatientsPositive controlAneurysms
2019
Glia: A Gate Controlling Animal Behavior?
Wyart C, Prendergast A. Glia: A Gate Controlling Animal Behavior? Current Biology 2019, 29: r847-r850. PMID: 31505186, DOI: 10.1016/j.cub.2019.07.058.Peer-Reviewed Original Research
2018
Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature
Sternberg JR, Prendergast AE, Brosse L, Cantaut-Belarif Y, Thouvenin O, Orts-Del’Immagine A, Castillo L, Djenoune L, Kurisu S, McDearmid JR, Bardet PL, Boccara C, Okamoto H, Delmas P, Wyart C. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nature Communications 2018, 9: 3804. PMID: 30228263, PMCID: PMC6143598, DOI: 10.1038/s41467-018-06225-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCerebrospinal FluidCiliaMechanotransduction, CellularNeuronsSpinal CordZebrafishZebrafish ProteinsConceptsCentral canalCSF-cNsSpontaneous activityCSF flowCerebrospinal fluid-contacting neuronsSpine curvatureCSF-contacting neuronsCerebrospinal fluid flowSpinal cordIdiopathic scoliosisSingle-channel openingsCalcium activityPKD2L1 channelPKD2L1Mechanosensory cellsNeuronsCanalChannel openingMechanoceptionKyphosisCilia motilityCord
2017
The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes
Djenoune L, Desban L, Gomez J, Sternberg JR, Prendergast A, Langui D, Quan FB, Marnas H, Auer TO, Rio JP, Del Bene F, Bardet PL, Wyart C. The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes. Scientific Reports 2017, 7: 719. PMID: 28389647, PMCID: PMC5428266, DOI: 10.1038/s41598-017-00350-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedAxonsBiomarkersCarrier ProteinsCell DifferentiationCerebrospinal FluidFluorescent Antibody TechniqueGanglia, SpinalHomozygoteMutationNeuronsSensory Receptor CellsSignal TransductionSpinal CordSpinal Nerve RootsTRPP Cation ChannelsZebrafishZebrafish ProteinsConceptsDual developmental originDevelopmental originsDistinct progenitor domainsApical extensionDistinct functional subtypesDifferent developmental originsCerebrospinal fluid-contacting neuronsTranscription factorsMechanical cuesZebrafish larvaeDistinct functionsProgenitor domainsCentral nervous systemCell typesDistinct cascadesFunctional populationsDifferent functional propertiesCSF-cNsNovel avenuesPKD2L1 channelFunctional subtypesSensory neuronsNeuronal targetsDistinct functional populationsSpecific markers
2016
CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits
Böhm UL, Prendergast A, Djenoune L, Nunes Figueiredo S, Gomez J, Stokes C, Kaiser S, Suster M, Kawakami K, Charpentier M, Concordet JP, Rio JP, Del Bene F, Wyart C. CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits. Nature Communications 2016, 7: 10866. PMID: 26946992, PMCID: PMC4786674, DOI: 10.1038/ncomms10866.Peer-Reviewed Original ResearchConceptsSpinal cordSpinal circuitsCentral pattern generatorCSF-cNsCerebrospinal fluid-contacting neuronsSpinal central pattern generatorVentral spinal cordLocomotor central pattern generatorCSF-contacting neuronsCentral canalSpinal bendingCordNeuronsMechanical stimuliMechanosensory organsOrgansSensory modalitiesAnimals
2015
Reck enables cerebrovascular development by promoting canonical Wnt signaling
Ulrich F, Carretero-Ortega J, Menéndez J, Narvaez C, Sun B, Lancaster E, Pershad V, Trzaska S, Véliz E, Kamei M, Prendergast A, Kidd KR, Shaw KM, Castranova DA, Pham VN, Lo BD, Martin BL, Raible DW, Weinstein BM, Torres-Vázquez J. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development 2015, 143: 147-159. PMID: 26657775, PMCID: PMC4725199, DOI: 10.1242/dev.123059.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedBlood-Brain BarrierBrainCell LineCerebrovascular CirculationEndothelial CellsGPI-Linked ProteinsHuman Umbilical Vein Endothelial CellsHumansMutationNeovascularization, PhysiologicVascular Endothelial Growth Factor AWnt Signaling PathwayZebrafishZebrafish ProteinsConceptsCanonical WntForward genetic screenCysteine-rich proteinBlood-brain barrierVascular endothelial growth factorReversion-inducing cysteine-rich proteinGenetic screenLethal mutantsProper expressionEndothelial cellsInactivating lesionMolecular markersPivotal modulatorCancer biologyCultured endothelial cellsKazal motifsVascular biologyProtective interfaceMutantsBrain blood vesselsEndothelial growth factorWntBBB formationBiologyRECK
2012
Postembryonic neuronal addition in Zebrafish dorsal root ganglia is regulated by Notch signaling
McGraw HF, Snelson CD, Prendergast A, Suli A, Raible DW. Postembryonic neuronal addition in Zebrafish dorsal root ganglia is regulated by Notch signaling. Neural Development 2012, 7: 23. PMID: 22738203, PMCID: PMC3438120, DOI: 10.1186/1749-8104-7-23.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedGanglia, SpinalGene Expression Regulation, DevelopmentalHomeodomain ProteinsIntracellular Signaling Peptides and ProteinsMembrane ProteinsNerve Tissue ProteinsNeural CrestNeurogenesisNeuronsReceptor, Notch1Signal TransductionZebrafishZebrafish ProteinsConceptsLarval developmentNotch signalingDorsal root gangliaTransgenic zebrafish lineNeural crest migrationLate larval developmentNeural crest cellsFate-mapping experimentsNeuronal additionVertebrate embryosZebrafish lineCellular regulationCrest migrationProgenitor populationsCrest cellsDRG formationRoot gangliaNew neuronsConditional inhibitionProgenitor cellsSignalingDRG neuronsSensory neuronsPopulation of residentsNeuronsThe metalloproteinase inhibitor Reck is essential for zebrafish DRG development
Prendergast A, Linbo TH, Swarts T, Ungos JM, McGraw HF, Krispin S, Weinstein BM, Raible DW. The metalloproteinase inhibitor Reck is essential for zebrafish DRG development. Development 2012, 139: 1141-1152. PMID: 22296847, PMCID: PMC3283124, DOI: 10.1242/dev.072439.Peer-Reviewed Original ResearchConceptsRECK functionsNeural crestForward genetic screenCell fate specificationMultipotent cell lineagesCell-autonomous fashionCysteine-rich proteinNeural crest cellsSensory neuron formationReversion-inducing cysteine-rich proteinGenetic screenInhibitors of metalloproteinasesFate specificationSensory neuron precursorsCell motilityCrest cellsCell lineagesProper migrationDRG formationDRG developmentNeuron formationMyriad tissuesKazal motifsNeuron precursorsGenes
2010
Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest
Curran K, Lister JA, Kunkel GR, Prendergast A, Parichy DM, Raible DW. Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest. Developmental Biology 2010, 344: 107-118. PMID: 20460180, PMCID: PMC2909359, DOI: 10.1016/j.ydbio.2010.04.023.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedCell LineageForkhead Transcription FactorsGene Expression Regulation, DevelopmentalMelanocytesMicrophthalmia-Associated Transcription FactorMicroscopy, FluorescenceModels, BiologicalModels, GeneticMutationNeural CrestPhylogenyPigmentationZebrafishZebrafish ProteinsConceptsIridophore developmentPigment cellsCell fate plasticityZebrafish neural crestCell fate decisionsTranscription factor MITFCell lineage analysisNeural crest cellsIridescent iridophoresBlack melanophoresYellow xanthophoresMelanophore developmentFate decisionsFate plasticityTranscriptional switchDouble mutantTractable systemDanio rerioLineage analysisMelanoblast markerCrest cellsKey regulatorFoxD3Neural crestIridophores