2024
Insights From Omics in Lyme Disease
Bockenstedt L, Belperron A. Insights From Omics in Lyme Disease. The Journal Of Infectious Diseases 2024, 230: s18-s26. PMID: 39140719, DOI: 10.1093/infdis/jiae250.Peer-Reviewed Original Research
2023
The Role of B Cells in Skin Inflammation
Frank A, Belperron A, Bockenstedt L. The Role of B Cells in Skin Inflammation. Journal Of Student Research 2023, 11 DOI: 10.47611/jsr.v11i3.1684.Commentaries, Editorials and Letters
2022
Longitudinal serum proteomics analyses identify unique and overlapping host response pathways in Lyme disease and West Nile virus infection
Boada P, Fatou B, Belperron A, Sigdel T, Smolen K, Wurie Z, Levy O, Ronca S, Murray K, Liberto J, Rashmi P, Kerwin M, Montgomery R, Bockenstedt L, Steen H, Sarwal M. Longitudinal serum proteomics analyses identify unique and overlapping host response pathways in Lyme disease and West Nile virus infection. Frontiers In Immunology 2022, 13: 1012824. PMID: 36569838, PMCID: PMC9784464, DOI: 10.3389/fimmu.2022.1012824.Peer-Reviewed Original ResearchConceptsWest Nile virus infectionLyme diseaseVirus infectionWNV infectionSerum proteomeSymptomatic WNV infectionTime of diagnosisHealthy control seraDisseminated Lyme diseaseHost response pathwaysExtracellular bacterial infectionsSerum proteomic analysisIntracellular viral infectionsViral infectionHost responseBacterial infectionsControl seraStudy participantsInfectionDiseaseDisease biomarkersEarly diagnosticsLC/MSMolecular mechanismsRecovery phase
2021
Single cell immunophenotyping of the skin lesion erythema migrans Identifies IgM memory B cells
Jiang R, Meng H, Raddassi K, Fleming I, Hoehn KB, Dardick KR, Belperron AA, Montgomery RR, Shalek AK, Hafler DA, Kleinstein SH, Bockenstedt LK. Single cell immunophenotyping of the skin lesion erythema migrans Identifies IgM memory B cells. JCI Insight 2021, 6: e148035. PMID: 34061047, PMCID: PMC8262471, DOI: 10.1172/jci.insight.148035.Peer-Reviewed Original ResearchConceptsMemory B cellsErythema migransB cellsEM lesionsIgM memory B cellsLyme diseaseB-cell receptor sequencingSkin infection siteCell receptor sequencingEarly Lyme diseaseLocal antigen presentationSkin immune responsesB cell populationsSingle-cell immunophenotypingMHC class II genesUninvolved skinImmune cellsSpirochetal infectionAntigen presentationCell immunophenotypingT cellsImmune responseIsotype usageAntibody productionInitial signs
2019
The RpoS Gatekeeper in Borrelia burgdorferi: An Invariant Regulatory Scheme That Promotes Spirochete Persistence in Reservoir Hosts and Niche Diversity
Caimano MJ, Groshong AM, Belperron A, Mao J, Hawley KL, Luthra A, Graham DE, Earnhart CG, Marconi RT, Bockenstedt LK, Blevins JS, Radolf JD. The RpoS Gatekeeper in Borrelia burgdorferi: An Invariant Regulatory Scheme That Promotes Spirochete Persistence in Reservoir Hosts and Niche Diversity. Frontiers In Microbiology 2019, 10: 1923. PMID: 31507550, PMCID: PMC6719511, DOI: 10.3389/fmicb.2019.01923.Peer-Reviewed Original ResearchΣ factorsPhase genesDual-color reporter systemParalogous gene familiesRpoS-regulated genesAlternative σ factorsOligopeptide-binding proteinComplex regulatory pathwaysNymphal blood mealsVariable surface lipoproteinsEnzootic cycleSyntenic genesRpoS regulonOrthologous genesNiche diversityGene familyPersistence genesMammalian phaseTranscribes genesSpirochete persistenceRpoS pathwayMammalian infectionTransposon mutantsMaximal fitnessRegulatory pathwaysCorrigendum to “Vertical transmission rates of Borrelia miyamotoi in Ixodes scapularis collected from white-tailed deer” [Ticks Tick-Borne Dis. 10 (2019) 682–689]
Han S, Lubelczyk C, Hickling GJ, Belperron AA, Bockenstedt LK, Tsao JI. Corrigendum to “Vertical transmission rates of Borrelia miyamotoi in Ixodes scapularis collected from white-tailed deer” [Ticks Tick-Borne Dis. 10 (2019) 682–689]. Ticks And Tick-borne Diseases 2019, 10: 1173. PMID: 31129067, DOI: 10.1016/j.ttbdis.2019.05.003.Peer-Reviewed Original ResearchVertical transmission rates of Borrelia miyamotoi in Ixodes scapularis collected from white-tailed deer
Han S, Lubelczyk C, Hickling GJ, Belperron AA, Bockenstedt LK, Tsao JI. Vertical transmission rates of Borrelia miyamotoi in Ixodes scapularis collected from white-tailed deer. Ticks And Tick-borne Diseases 2019, 10: 682-689. PMID: 30846418, PMCID: PMC6551370, DOI: 10.1016/j.ttbdis.2019.02.014.Peer-Reviewed Original ResearchConceptsVertical transmission rateB. miyamotoiBorrelia miyamotoiBorrelia miyamotoi diseaseHunter-harvested white-tailed deerTransovarial transmission ratesInfected female ticksMiyamotoi infectionB. burgdorferi sensu strictoBurgdorferi sensu strictoInfection prevalenceI. scapularisHuman hostIxodes ricinus complexMiyamotoiLarval I. scapularisWhite-tailed deerLyme borreliaeFever spirochetesFurther investigation
2017
Two Photon Intravital Microscopy of Lyme Borrelia in Mice
Belperron AA, Mao J, Bockenstedt LK. Two Photon Intravital Microscopy of Lyme Borrelia in Mice. Methods In Molecular Biology 2017, 1690: 279-290. PMID: 29032551, DOI: 10.1007/978-1-4939-7383-5_20.Peer-Reviewed Original ResearchVancomycin Reduces Cell Wall Stiffness and Slows Swim Speed of the Lyme Disease Bacterium
Harman MW, Hamby AE, Boltyanskiy R, Belperron AA, Bockenstedt LK, Kress H, Dufresne ER, Wolgemuth CW. Vancomycin Reduces Cell Wall Stiffness and Slows Swim Speed of the Lyme Disease Bacterium. Biophysical Journal 2017, 112: 746-754. PMID: 28256234, PMCID: PMC5340155, DOI: 10.1016/j.bpj.2016.12.039.Peer-Reviewed Original ResearchConceptsCell wall stiffnessCell wallCell stiffnessCell speedLyme disease bacteriumSpirochete survivalPeriplasmic volumeCell shapeFlat wave shapeSwim speedTick hostsCell growthCell morphologyDisease bacteriumVolume regulationHost tissuesTestable hypothesesPrevious mathematical modelingBleb formationSublethal dosesMotilityBiophysical modelSwimming speedBorrelia burgdorferiSlower swim speed
2016
Radical cure of experimental babesiosis in immunodeficient mice using a combination of an endochin-like quinolone and atovaquone
Lawres LA, Garg A, Kumar V, Bruzual I, Forquer IP, Renard I, Virji AZ, Boulard P, Rodriguez EX, Allen AJ, Pou S, Wegmann KW, Winter RW, Nilsen A, Mao J, Preston DA, Belperron AA, Bockenstedt LK, Hinrichs DJ, Riscoe MK, Doggett JS, Mamoun C. Radical cure of experimental babesiosis in immunodeficient mice using a combination of an endochin-like quinolone and atovaquone. Journal Of Experimental Medicine 2016, 213: 1307-1318. PMID: 27270894, PMCID: PMC4925016, DOI: 10.1084/jem.20151519.Peer-Reviewed Original ResearchConceptsExperimental babesiosisHuman babesiosisImmunodeficient miceRadical cureELQ-334Discontinuation of therapyFuture clinical evaluationEndochin-like quinolonesVivo efficacy studiesAdverse side effectsRecrudescent parasitesMost clinical casesCombination therapyMultisystem diseaseClinical evaluationComplete clearanceCurrent treatmentDrug combinationsDrug failureSide effectsExcellent growth inhibitory activityEfficacy studiesClinical casesGrowth inhibitory activityAtovaquone
2014
Borrelia burgdorferi Promotes the Establishment of Babesia microti in the Northeastern United States
Dunn JM, Krause PJ, Davis S, Vannier EG, Fitzpatrick MC, Rollend L, Belperron AA, States SL, Stacey A, Bockenstedt LK, Fish D, Diuk-Wasser MA. Borrelia burgdorferi Promotes the Establishment of Babesia microti in the Northeastern United States. PLOS ONE 2014, 9: e115494. PMID: 25545393, PMCID: PMC4278703, DOI: 10.1371/journal.pone.0115494.Peer-Reviewed Original ResearchConceptsB. microtiB. burgdorferiBabesia microtiLyme diseaseRespective causative agentsSpread of babesiosisI. scapularis larvaeInfected micePrimary reservoir hostHigh prevalenceLeucopus miceMiceHuman babesiosisBorrelia burgdorferiLaboratory dataLarval burdenCausative agentMicrotiBurgdorferiCoinfectionReservoir hostsDiseaseR0 modelBasic reproduction numberEnzootic cycleDual role for Fcγ receptors in host defense and disease in Borrelia burgdorferi-infected mice
Belperron AA, Liu N, Booth CJ, Bockenstedt LK. Dual role for Fcγ receptors in host defense and disease in Borrelia burgdorferi-infected mice. Frontiers In Cellular And Infection Microbiology 2014, 4: 75. PMID: 24967215, PMCID: PMC4052197, DOI: 10.3389/fcimb.2014.00075.Peer-Reviewed Original ResearchConceptsInnate immune cellsWild-type miceB. burgdorferi infectionB. burgdorferi-infected miceBurgdorferi-infected miceImmune cellsBurgdorferi infectionType micePathogen burdenHost defenseFc receptor common gamma chainIgG-mediated clearanceC-reactive proteinBorrelia burgdorferiToll-Like Receptor InteractionsSingle knockout miceCommon gamma chainAcute phaseInfected jointsArthritis severityMolecule MyD88Inflammatory cytokinesInflammatory pathwaysIL-1betaReactive proteinWhat ticks do under your skin: two-photon intravital imaging of Ixodes scapularis feeding in the presence of the lyme disease spirochete.
Bockenstedt LK, Gonzalez D, Mao J, Li M, Belperron AA, Haberman A. What ticks do under your skin: two-photon intravital imaging of Ixodes scapularis feeding in the presence of the lyme disease spirochete. The Yale Journal Of Biology And Medicine 2014, 87: 3-13. PMID: 24600332, PMCID: PMC3941458.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArachnid VectorsBorrelia burgdorferiFeeding BehaviorGreen Fluorescent ProteinsHost-Parasite InteractionsHost-Pathogen InteractionsIxodesLyme DiseaseMiceMice, Inbred BALB CMice, Inbred C57BLMice, KnockoutMicroscopy, ConfocalMicroscopy, Electron, ScanningMicroscopy, Fluorescence, MultiphotonNymphSkinTick InfestationsTime Factors
2012
Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy
Bockenstedt LK, Gonzalez DG, Haberman AM, Belperron AA. Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy. Journal Of Clinical Investigation 2012, 122: 2652-2660. PMID: 22728937, PMCID: PMC3386809, DOI: 10.1172/jci58813.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Bacterial AgentsAntigens, BacterialArthritis, InfectiousBacterial LoadBorrelia burgdorferiCartilageCeftriaxoneDoxycyclineEar, ExternalFemaleFluorescence Recovery After PhotobleachingGreen Fluorescent ProteinsJoint CapsuleLyme DiseaseMiceMice, Inbred C3HMice, Inbred C57BLMice, KnockoutMicroscopy, Fluorescence, MultiphotonMyeloid Differentiation Factor 88PatellaRecombinant ProteinsConceptsNaive miceAntibiotic treatmentIntravital microscopyAntibiotic-refractory Lyme arthritisLyme diseaseTNF-α productionBorrelia burgdorferi antigensB. burgdorferi antigensSpirochete antigenTLR responsivenessInflammatory arthritisAntibiotic therapyLyme arthritisWT miceMusculoskeletal symptomsAntigens persistSlow resolutionImmunodeficient miceMouse modelTissue transplantsPathogen burdenSpirochete DNAInfectious spirochetesLyme borreliosisMiceThe heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue
Harman MW, Dunham-Ems SM, Caimano MJ, Belperron AA, Bockenstedt LK, Fu HC, Radolf JD, Wolgemuth CW. The heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 3059-3064. PMID: 22315410, PMCID: PMC3286914, DOI: 10.1073/pnas.1114362109.Peer-Reviewed Original Research
2011
Ballistic Motion of Spirochete Membrane Proteins
Kress H, Boltyanskiy R, Belperron A, Mejean C, Wolgemuth C, Bockenstedt L, Dufresne E. Ballistic Motion of Spirochete Membrane Proteins. Biophysical Journal 2011, 100: 515a. DOI: 10.1016/j.bpj.2010.12.3013.Peer-Reviewed Original Research
2009
The Caspase 1 Inflammasome Is Not Required for Control of Murine Lyme Borreliosis
Liu N, Belperron AA, Booth CJ, Bockenstedt LK. The Caspase 1 Inflammasome Is Not Required for Control of Murine Lyme Borreliosis. Infection And Immunity 2009, 77: 3320-3327. PMID: 19487481, PMCID: PMC2715671, DOI: 10.1128/iai.00100-09.Peer-Reviewed Original ResearchConceptsCaspase-1 inflammasomeCaspase-1Immune responseHost defenseLyme borreliosisToll-like receptor-mediated responsesDay 14 postinfectionPrevalence of arthritisT cell responsesApoptosis-associated speck-like proteinMild transient elevationBorrelia burgdorferiMurine Lyme borreliosisReceptor-mediated responsesCaspase-1 deficiencyC-terminal caspase recruitment domainSpeck-like proteinAbility of macrophagesEnzyme caspase-1IL-18Humoral immunityInterleukin-1betaTransient elevationPathogen burdenInflammasome
2007
Marginal Zone B-Cell Depletion Impairs Murine Host Defense against Borrelia burgdorferi Infection
Belperron AA, Dailey CM, Booth CJ, Bockenstedt LK. Marginal Zone B-Cell Depletion Impairs Murine Host Defense against Borrelia burgdorferi Infection. Infection And Immunity 2007, 75: 3354-3360. PMID: 17470546, PMCID: PMC1932939, DOI: 10.1128/iai.00422-07.Peer-Reviewed Original ResearchConceptsT-cell-independent antibodiesCell-depleted miceSplenic CD4Cell depletionPathogen burdenSplenic T cell responsesHost defenseT-cell activation markersC3H/HeJ miceImmunoglobulin M titersInfected control miceMurine host defensePathogen-specific IgMT cell responsesMarginal zone B cellsBlood-borne antigensBlood-borne pathogensWeeks of infectionB cell subsetsImmune mouse serumBorrelia burgdorferi infectionImportant host defenseSevere arthritisActivation markersControl mice
2005
Infection-Induced Marginal Zone B Cell Production of Borrelia hermsii-Specific Antibody Is Impaired in the Absence of CD1d
Belperron AA, Dailey CM, Bockenstedt LK. Infection-Induced Marginal Zone B Cell Production of Borrelia hermsii-Specific Antibody Is Impaired in the Absence of CD1d. The Journal Of Immunology 2005, 174: 5681-5686. PMID: 15843569, DOI: 10.4049/jimmunol.174.9.5681.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, BacterialAntibody SpecificityAntigens, CD1Antigens, CD1dB-Lymphocyte SubsetsBorreliaBorrelia InfectionsDNA, BacterialGerminal CenterImmune SeraImmunity, InnateImmunization, PassiveImmunoglobulin MLymphocyte ActivationLymphocyte DepletionMiceMice, Inbred C57BLMice, KnockoutConceptsMZB cellsActivation markersPathogen burdenMouse serumAbsence of CD1dBlood-borne AgsCD1d-deficient micePathogen-specific IgMActivation marker expressionMarginal zone B cellsT cell helpImmune mouse serumWild-type miceCritical host defenseB cell productionB. hermsiiCD1d expressionSerum levelsCell helpPassive transferSpirochete burdenAb productionSpirochete Borrelia burgdorferiB cellsCell activation
2004
Toxoplasma gondii: generation of novel truncation mutations in the linker domain of dihydrofolate reductase–thymidylate synthase
Belperron AA, Fox BA, O’Neil R, Peaslee KA, Horii T, Anderson AC, Bzik DJ. Toxoplasma gondii: generation of novel truncation mutations in the linker domain of dihydrofolate reductase–thymidylate synthase. Experimental Parasitology 2004, 106: 179-182. PMID: 15172226, DOI: 10.1016/j.exppara.2004.03.002.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntiprotozoal AgentsBlotting, WesternDrug ResistanceHumansModels, GeneticMolecular Sequence DataMultienzyme ComplexesMutagenesis, InsertionalMutationPoint MutationPolymerase Chain ReactionPyrimethamineRestriction MappingSequence AlignmentTetrahydrofolate DehydrogenaseThymidylate SynthaseToxoplasmaTransfection