2022
Molecular determinants of peri‐apical targeting of inositol 1,4,5‐trisphosphate receptor type 3 in cholangiocytes
Rodrigues MA, Gomes DA, Fiorotto R, Guerra MT, Weerachayaphorn J, Bo T, Sessa WC, Strazzabosco M, Nathanson MH. Molecular determinants of peri‐apical targeting of inositol 1,4,5‐trisphosphate receptor type 3 in cholangiocytes. Hepatology Communications 2022, 6: 2748-2764. PMID: 35852334, PMCID: PMC9512452, DOI: 10.1002/hep4.2042.Peer-Reviewed Original ResearchConceptsLipid raftsCaveolin-1Intact lipid raftsType 3 inositol trisphosphate receptorApical regionC-terminal amino acidsTrisphosphate receptor type 3Madin-Darby canine kidney cellsCanine kidney cellsFluorescence microscopy techniquesInositol trisphosphate receptorApical localizationTrisphosphate receptorHeavy chain 9Molecular determinantsChemical disruptionAmino acidsITPR3RaftsKidney cellsIntracellular CaFinal common eventReceptor type 3Release channelMYH9
2012
Characterization of Lipid Droplet and Its Regulation by Caveolin‐1 in Endothelial Cells
Kuo A, Zhang X, Harrison K, Sessa W. Characterization of Lipid Droplet and Its Regulation by Caveolin‐1 in Endothelial Cells. The FASEB Journal 2012, 26: 597.1-597.1. DOI: 10.1096/fasebj.26.1_supplement.597.1.Peer-Reviewed Original ResearchDeficient endothelial cellsCav-1Lipid dropletsFatty acid uptakeLD formationCaveolin-1Putative hairpin structureSurface of LDsCav-1 null miceIntegral membrane proteinsCellular energy homeostasisPotential physiological functionsAcid uptakeEndothelial cellsLD homeostasisUnique organellesCaveolae microdomainsMembrane proteinsKey cell typesDiacylglycerol acyltransferasesNovel functionPlasma membraneBiological processesIntracellular regulationPhysiological functions
2010
Telmisartan regresses left ventricular hypertrophy in caveolin-1-deficient mice
Kreiger M, Di Lorenzo A, Teutsch C, Kauser K, Sessa WC. Telmisartan regresses left ventricular hypertrophy in caveolin-1-deficient mice. Laboratory Investigation 2010, 90: 1573-1581. PMID: 20585312, PMCID: PMC3248785, DOI: 10.1038/labinvest.2010.116.Peer-Reviewed Original ResearchConceptsCav-1 KO miceAngiotensin receptor blockersKO miceCardiac functionLV hypertrophyWT miceCardiac hypertrophyΒ-myosin heavy chainBody weight ratioTibial length ratioNatriuretic peptide ACaveolin-1-deficient miceCav-1 KOReceptor blockersPerivascular fibrosisVentricular hypertrophyVentricular weightAngiotensin IIIntramyocardial vesselsSpontaneous modelUnique genetic modelHypertrophyMiceTreatmentCaveolin-1
2006
Caveolin‐1 regulation of experimental colitis
Greer J, Chidlow J, Bernatchez P, Sessa W, Shukla D, Kevil C. Caveolin‐1 regulation of experimental colitis. The FASEB Journal 2006, 20: a1378-a1378. DOI: 10.1096/fasebj.20.5.a1378.Peer-Reviewed Original ResearchDisease activity indexExperimental colitisAP-CavDextran sulfate sodium (DSS) modelWild-type control miceDSS-Induced ColitisInflammatory bowel diseaseCaveolin-1Degree of inflammationWild-type miceWild-type colonAB peptideGross bleedingTransmural inflammationInduced colitisMicrovascular dysfunctionStool consistencyBowel diseaseMicrovascular functionLymphoplasmacytic infiltrateOccult bloodControl miceHistopathology scoresInflammatory responseColitis
2001
Distinction between signaling mechanisms in lipid rafts vs. caveolae
Sowa G, Pypaert M, Sessa W. Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 14072-14077. PMID: 11707586, PMCID: PMC61169, DOI: 10.1073/pnas.241409998.Peer-Reviewed Original ResearchConceptsCav-1Raft domainsLipid raftsCholesterol-rich lipid raft domainsLipid raft domainsCaveolae assemblyEndothelial nitric oxide synthaseCaveolae biogenesisAcylated proteinsSignal transductionSpatial regulationPlasma membraneNegative regulationCaveolin-1CaveolaeFirst clear exampleRaftsPhysical interactionProteinCellsRegulationENOS functionBiogenesisDomainClear exampleThe sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane.
Karpen H, Bukowski J, Hughes T, Gratton J, Sessa W, Gailani M. The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. Journal Of Biological Chemistry 2001, 276: 30571. DOI: 10.1016/s0021-9258(20)89775-0.Peer-Reviewed Original ResearchThe Sonic Hedgehog Receptor Patched Associates with Caveolin-1 in Cholesterol-rich Microdomains of the Plasma Membrane* 210
Karpen H, Bukowski J, Hughes T, Gratton J, Sessa W, Gailani M. The Sonic Hedgehog Receptor Patched Associates with Caveolin-1 in Cholesterol-rich Microdomains of the Plasma Membrane* 210. Journal Of Biological Chemistry 2001, 276: 19503-19511. PMID: 11278759, DOI: 10.1074/jbc.m010832200.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBinding SitesBlotting, WesternCaveolin 1CaveolinsCell MembraneCholesterolCOS CellsDNA, ComplementaryDrosophila ProteinsElectrophoresis, Polyacrylamide GelGlutathione TransferaseHumansImmunohistochemistryMembrane MicrodomainsMembrane ProteinsMicroscopy, ConfocalModels, BiologicalMolecular Sequence DataMutationPatched ReceptorsPrecipitin TestsProtein BindingProtein Structure, TertiaryProtein TransportReceptors, Cell SurfaceReceptors, G-Protein-CoupledRecombinant Fusion ProteinsSignal TransductionSmoothened ReceptorSubcellular FractionsTime FactorsConceptsCholesterol-rich microdomainsRaft microdomainsCaveolin-1Receptor complexEarly embryonic patterningFractionation studiesHedgehog receptor complexCaveolin-enriched microdomainsBuoyant density fractionsEmbryonic patterningHh proteinsLipid raftsSubcellular localizationPlasma membranePatchedPlasmalemmal cholesterolProtein experimentsImmunoprecipitation studiesSmoothenedMicrodomainsConfocal microscopyImmunocytochemistry dataComplexesMembraneDrosophila
2000
In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation
Bucci M, Gratton J, Rudic R, Acevedo L, Roviezzo F, Cirino G, Sessa W. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nature Medicine 2000, 6: 1362-1367. PMID: 11100121, DOI: 10.1038/82176.Peer-Reviewed Original ResearchConceptsCaveolin-1Signal transductionSmall-molecule mimicryCaveolae assemblyInternalization sequenceCoat proteinEndothelial cellsPhysiological importanceEndothelial nitric oxide synthase (eNOS) inhibitorTransductionCholesterol transportNitric oxide synthase inhibitorChimeric peptideInhibits nitric oxide synthesisOxide synthase inhibitorNitric oxide synthesisNew therapeutic approachesNitric oxide productionSelective inhibitionDomainPeptidesCaveolinAcute inflammationCellsSystemic administrationReconstitution of an Endothelial Nitric-oxide Synthase (eNOS), hsp90, and Caveolin-1 Complex in Vitro EVIDENCE THAT hsp90 FACILITATES CALMODULIN STIMULATED DISPLACEMENT OF eNOS FROM CAVEOLIN-1*
Gratton J, Fontana J, O'Connor D, Garcı́a-Cardeña G, McCabe T, Sessa W. Reconstitution of an Endothelial Nitric-oxide Synthase (eNOS), hsp90, and Caveolin-1 Complex in Vitro EVIDENCE THAT hsp90 FACILITATES CALMODULIN STIMULATED DISPLACEMENT OF eNOS FROM CAVEOLIN-1*. Journal Of Biological Chemistry 2000, 275: 22268-22272. PMID: 10781589, DOI: 10.1074/jbc.m001644200.Peer-Reviewed Original ResearchConceptsEndothelial nitric oxide synthaseAssociation of eNOSNitric oxide synthaseLung microvascular endothelial cellsCaveolin-1Microvascular endothelial cellsENOS enzymatic activityAction of CaMBovine lung microvascular endothelial cellsENOS functionCalcium-activated calmodulinConcentration of CaMShock protein 90Addition of CaMEndothelial cellsVitro EvidenceCav-1Protein 90AssociationPresence of Hsp90
1999
Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters
Segal S, Brett S, Sessa W. Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. American Journal Of Physiology 1999, 277: h1167-h1177. PMID: 10484439, DOI: 10.1152/ajpheart.1999.277.3.h1167.Peer-Reviewed Original ResearchConceptsCaveolin-3Caveolin-1Skeletal muscleCaveolin isoformsCoat proteinCaveolinFunctional interactionIntact organismEnzyme isoformsNitric oxide synthase activitySmooth muscle cellsMuscle fibersOxide synthase activityVascular smooth muscleSynthase activitySkeletal muscle fibersMuscle cellsIsoformsCell systemSystemic vasculatureVena cavaFemoral arteryAbdominal aortaPeripheral vasculatureEndothelial cells
1997
Dissecting the Interaction between Nitric Oxide Synthase (NOS) and Caveolin FUNCTIONAL SIGNIFICANCE OF THE NOS CAVEOLIN BINDING DOMAININ VIVO *
Garcı́a-Cardeña G, Martasek P, Masters B, Skidd P, Couet J, Li S, Lisanti M, Sessa W. Dissecting the Interaction between Nitric Oxide Synthase (NOS) and Caveolin FUNCTIONAL SIGNIFICANCE OF THE NOS CAVEOLIN BINDING DOMAININ VIVO *. Journal Of Biological Chemistry 1997, 272: 25437-25440. PMID: 9325253, DOI: 10.1074/jbc.272.41.25437.Peer-Reviewed Original ResearchConceptsCaveolin-1Peripheral membrane proteinsInteraction of eNOSC-terminal tailAmino acids 310Direct interactionCo-transfection experimentsSite-directed mutagenesisNovel functional roleEndothelial nitric oxide synthaseMolecular chaperonesCytoplasmic domainCaveolin isoformsDeletion mutantsMammalian cellsEndothelial cell lysatesGlutathione S-transferaseMembrane proteinsCaveolin-2Coat proteinNegative regulationCaveolin-3Endothelial cellsDirect bindingGolgi region
1996
Endothelial Nitric Oxide Synthase Is Regulated by Tyrosine Phosphorylation and Interacts with Caveolin-1*
García-Cardeña G, Fan R, Stern D, Liu J, Sessa W. Endothelial Nitric Oxide Synthase Is Regulated by Tyrosine Phosphorylation and Interacts with Caveolin-1*. Journal Of Biological Chemistry 1996, 271: 27237-27240. PMID: 8910295, DOI: 10.1074/jbc.271.44.27237.Peer-Reviewed Original ResearchConceptsNovel regulatory mechanismTyrosine phosphorylationCaveolin-1Bovine aortic endothelial cellsRegulatory mechanismsProtein tyrosine phosphatase inhibitorCaveolin-interacting proteinsPhosphoamino acid analysisTyrosine phosphatase inhibitorTreatment of BAECBovine lung microvascular endothelial cellsEndothelial nitric oxide synthaseSubcellular traffickingPhosphatase inhibitorCoat proteinEndothelial cellsMetabolic labelingSodium orthovanadatePhosphorylationCaveolaeAortic endothelial cellsLung microvascular endothelial cellsProteinAcid analysisImmunoprecipitation