2018
Fast, in vivo voltage imaging using a red fluorescent indicator
Kannan M, Vasan G, Huang C, Haziza S, Li JZ, Inan H, Schnitzer MJ, Pieribone VA. Fast, in vivo voltage imaging using a red fluorescent indicator. Nature Methods 2018, 15: 1108-1116. PMID: 30420685, PMCID: PMC6516062, DOI: 10.1038/s41592-018-0188-7.Peer-Reviewed Original ResearchConceptsOptical toolsOptical toolboxUnparalleled temporal resolutionRed fluorescent indicatorVoltage imagingOptical electrophysiologyModest illumination intensitiesHigh-throughput strategyVoltage indicatorsIllumination intensityNew hueAcute brain slicesMultispectral imagingGreen probesSubthreshold voltageTemporal resolutionEnhanced sensitivityPostsynaptic potentialsMRuby3Brain slicesHippocampal rhythmsActivity monitorFunctional imagingImagingGEVIs
2017
Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight
Platisa J, Vasan G, Yang A, Pieribone VA. Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight. ACS Chemical Neuroscience 2017, 8: 513-523. PMID: 28045247, PMCID: PMC5355904, DOI: 10.1021/acschemneuro.6b00234.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedCerebral CortexElectric StimulationEmbryo, MammalianGreen Fluorescent ProteinsHEK293 CellsHumansLuminescent ProteinsMiceModels, MolecularMolecular BiologyMutagenesis, Site-DirectedMutationNeuronsPatch-Clamp TechniquesRecombinant Fusion ProteinsTransfectionVoltage-Sensitive Dye Imaging
2016
A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices
Abdelfattah AS, Farhi SL, Zhao Y, Brinks D, Zou P, Ruangkittisakul A, Platisa J, Pieribone VA, Ballanyi K, Cohen AE, Campbell RE. A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices. Journal Of Neuroscience 2016, 36: 2458-2472. PMID: 26911693, PMCID: PMC4764664, DOI: 10.1523/jneurosci.3484-15.2016.Peer-Reviewed Original ResearchConceptsVoltage indicatorsBlue-shifted channelrhodopsinRed-shifted fluorescent proteinsFluorescent voltage indicatorsWide-field fluorescence microscopyBlue excitationOptical imagingOptical electrophysiologyLow phototoxicityAutofluorescent backgroundLight photoactivationSingle-trial recordingsTemporal resolutionChannelrhodopsinIntrinsic advantagesExcitationVoltage oscillationsFluorescence microscopyOscillationsGreen indicatorsChromophoreMicroscopyResolution
2014
Mechanistic Studies of the Genetically Encoded Fluorescent Protein Voltage Probe ArcLight
Han Z, Jin L, Chen F, Loturco JJ, Cohen LB, Bondar A, Lazar J, Pieribone VA. Mechanistic Studies of the Genetically Encoded Fluorescent Protein Voltage Probe ArcLight. PLOS ONE 2014, 9: e113873. PMID: 25419571, PMCID: PMC4242678, DOI: 10.1371/journal.pone.0113873.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAmino AcidsAnimalsCells, CulturedFluorescenceFluorescent DyesGreen Fluorescent ProteinsHEK293 CellsHumansHydrogen-Ion ConcentrationKineticsLuminescent ProteinsMembrane PotentialsMicroscopy, ConfocalMutation, MissenseNeuronsPatch-Clamp TechniquesPrenylationRatsRecombinant Fusion ProteinsSpectrometry, Fluorescence
2006
Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells
Baker BJ, Lee H, Pieribone VA, Cohen LB, Isacoff EY, Knopfel T, Kosmidis EK. Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. Journal Of Neuroscience Methods 2006, 161: 32-38. PMID: 17126911, DOI: 10.1016/j.jneumeth.2006.10.005.Peer-Reviewed Original Research
2003
Midbrain serotonergic neurons are central pH chemoreceptors
Severson CA, Wang W, Pieribone VA, Dohle CI, Richerson GB. Midbrain serotonergic neurons are central pH chemoreceptors. Nature Neuroscience 2003, 6: 1139-1140. PMID: 14517544, DOI: 10.1038/nn1130.Peer-Reviewed Original Research
2002
A protein kinase A–dependent molecular switch in synapsins regulates neurite outgrowth
Kao HT, Song HJ, Porton B, Ming GL, Hoh J, Abraham M, Czernik AJ, Pieribone VA, Poo MM, Greengard P. A protein kinase A–dependent molecular switch in synapsins regulates neurite outgrowth. Nature Neuroscience 2002, 5: 431-437. PMID: 11976703, DOI: 10.1038/nn840.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodiesBucladesineCells, CulturedConserved SequenceCyclic AMP-Dependent Protein KinasesEmbryo, NonmammalianEnzyme ActivatorsEnzyme InhibitorsGenes, ReporterMicroinjectionsMolecular Sequence DataMutagenesis, Site-DirectedNeuritesNeuronsPhosphorylationRNA, MessengerSequence Homology, Amino AcidSynapsinsXenopus laevisConceptsProtein kinase ANeurite outgrowthCAMP/protein kinase APhospho-specific antibodiesSingle amino acid residueX. laevis embryosAmino acid residuesDependent molecular switchPhosphorylation of synapsinCyclic AMPEmbryonic neuronal culturesNeuronal cell lineProtein kinaseConstitutive phosphorylationKinase AMolecular approachesMolecular switchAcid residuesLaevis embryosPKA inhibitorPotential molecular approachPhosphorylationGrowth-promoting actionCell linesSynapsin