A Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence
Zhang A, Zhang G, Cai B, Wilson T, Stephen J, Calhoun V, Wang Y. A Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence. Network Neuroscience 2024, 8: 791-807. PMID: 39355441, PMCID: PMC11349030, DOI: 10.1162/netn_a_00384.Peer-Reviewed Original ResearchPhiladelphia Neurodevelopmental CohortEmotional circuitryFunctional connectivityBrain's emotional circuitryEmotion identification skillBrain network organizationIndividuals aged 8Emotional processingEmotion perceptionBrain circuitsNeurodevelopmental CohortFMRI dataCognitive developmentIdentification skillsEmotional changesAged 8Adolescent stageAdolescentsNetwork organizationGroup-specific patternsIntermodular connectionsEmotionsCircuit developmentAccurate performanceBrainA Deep Dynamic Causal Learning Model to Study Changes in Dynamic Effective Connectivity During Brain Development
Wang Y, Qiao C, Qu G, Calhoun V, Stephen J, Wilson T, Wang Y. A Deep Dynamic Causal Learning Model to Study Changes in Dynamic Effective Connectivity During Brain Development. IEEE Transactions On Biomedical Engineering 2024, 71: 3390-3401. PMID: 38968024, DOI: 10.1109/tbme.2024.3423803.Peer-Reviewed Original ResearchDynamic effective connectivityEffective connectivityBrain developmentBrain developmental trajectoriesPhiladelphia Neurodevelopmental CohortLearning modelsNeurodevelopmental CohortBrain regionsDevelopmental trajectoriesSpatio-temporal dataInformation processing capabilitiesFuse informationCausal LearnerYoung adultsInterpretable Cognitive Ability Prediction: A Comprehensive Gated Graph Transformer Framework for Analyzing Functional Brain Networks
Qu G, Orlichenko A, Wang J, Zhang G, Xiao L, Zhang K, Wilson T, Stephen J, Calhoun V, Wang Y. Interpretable Cognitive Ability Prediction: A Comprehensive Gated Graph Transformer Framework for Analyzing Functional Brain Networks. IEEE Transactions On Medical Imaging 2024, 43: 1568-1578. PMID: 38109241, PMCID: PMC11090410, DOI: 10.1109/tmi.2023.3343365.Peer-Reviewed Original ResearchConceptsGraph transformation frameworkBrain imaging datasetsFunctional brain networksPhiladelphia Neurodevelopmental CohortConvolutional deep learningFeature embeddingPropagation weightsGraph embeddingHuman Connectome ProjectAttention mechanismImage datasetsDeep learningGraph transformationFunctional connectivityAnalyze functional brain networksTransformation frameworkDiffusion strategyBrain networksPositional encodingSpatial knowledgePrediction accuracyIndividual cognitive abilitiesEmbeddingNetworkGraph