Improving Explainability for Single-Channel EEG Deep Learning Classifiers via Interpretable Filters and Activation Analysis*
Ellis C, Miller R, Calhoun V. Improving Explainability for Single-Channel EEG Deep Learning Classifiers via Interpretable Filters and Activation Analysis*. 2023, 00: 2474-2481. DOI: 10.1109/bibm58861.2023.10385647.Peer-Reviewed Original ResearchDeep learning methodsLearning methodsContext of automated sleep stage classificationDeep learning classifierSleep stage classificationAutomated feature extractionMachine learning methodsImprove explainabilityLearned featuresFeature extractionExplainability methodsAwake samplesLearning classifiersRaw electroencephalographyIncrease model performanceLayer filtersExplainabilityModeling activitiesModel performanceFilterStage classificationClassifierFiltering activityElectroencephalographyFrequency filteringNeuropsychiatric Disorder Subtyping Via Clustered Deep Learning Classifier Explanations *
Ellis C, Miller R, Calhoun V. Neuropsychiatric Disorder Subtyping Via Clustered Deep Learning Classifier Explanations *. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2023, 00: 1-4. PMID: 38083012, DOI: 10.1109/embc40787.2023.10340837.Peer-Reviewed Original ResearchConceptsDynamic functional network connectivityResting-state functional magnetic resonanceFunctional magnetic resonanceNeuropsychiatric disordersFunctional network connectivityCharacterization of schizophreniaCognitive controlDeep learning classifierContext of schizophreniaAuditory networkBrain activityBrain networksVisual networkSubcortical networksCerebellar networkNovel Approach Explains Spatio-Spectral Interactions In Raw Electroencephalogram Deep Learning Classifiers
Ellis C, Sattiraju A, Miller R, Calhoun V. Novel Approach Explains Spatio-Spectral Interactions In Raw Electroencephalogram Deep Learning Classifiers. 2023, 00: 1-5. DOI: 10.1109/icasspw59220.2023.10193605.Peer-Reviewed Original ResearchIdentifying Neuropsychiatric Disorder Subtypes and Subtype-Dependent Variation in Diagnostic Deep Learning Classifier Performance
Ellis C, Miller R, Calhoun V. Identifying Neuropsychiatric Disorder Subtypes and Subtype-Dependent Variation in Diagnostic Deep Learning Classifier Performance. 2023, 00: 1-4. DOI: 10.1109/isbi53787.2023.10230384.Peer-Reviewed Original ResearchClinical decision support systemsDynamic functional network connectivityDeep learning classifier’s performanceDisorder subtypesDeep learning classifierDecision support systemClassifier performanceLearning classifiersNetwork connectivityClassifierFunctional network connectivitySupport systemSchizophrenia subtypesStudy disordersPerformanceDisordersSchizophreniaSubtypesNeuropsychiatricSystemNeuroimagingSubtype-dependentCapabilityNovel methods for elucidating modality importance in multimodal electrophysiology classifiers
Ellis C, Sendi M, Zhang R, Carbajal D, Wang M, Miller R, Calhoun V. Novel methods for elucidating modality importance in multimodal electrophysiology classifiers. Frontiers In Neuroinformatics 2023, 17: 1123376. PMID: 37006636, PMCID: PMC10050434, DOI: 10.3389/fninf.2023.1123376.Peer-Reviewed Original ResearchExplainability approachesExplainability methodsAutomated sleep stage classificationRaw time series dataConvolutional neural networkDeep learning classifierSleep stage classificationNovel methodMultimodal classificationLearning classifiersNeural networkClassifierLocal explanationsGlobal explanationsExplainabilitySubject-level differencesTime series dataAdvancement of personalized medicineGlobal methodClinical classifierClassificationClinical variablesElectrophysiological studiesStage classificationElectrophysiological classification