Linking neuroimaging and mental health data from the ABCD Study to UrbanSat measurements of macro environmental factors
Goldblatt R, Holz N, Tate G, Sherman K, Ghebremicael S, Bhuyan S, Al-Ajlouni Y, Santillanes S, Araya G, Abad S, Herting M, Thompson W, Thapaliya B, Sapkota R, Xu J, Liu J, Schumann G, Calhoun V. Linking neuroimaging and mental health data from the ABCD Study to UrbanSat measurements of macro environmental factors. Nature Mental Health 2024, 2: 1285-1297. DOI: 10.1038/s44220-024-00318-x.Peer-Reviewed Original ResearchSymptoms of mental illnessAdolescent Brain Cognitive DevelopmentResidential addressesAdolescent Brain Cognitive Development StudyMental illnessMental healthSubject's residential addressMental health dataDevelopmental periods of childhoodChild healthHealth dataEnvironmental factorsBaseline visitPeriod of childhoodObservational studyPopulation characteristicsHealthIndividual symptomsStudy dataUrban livingIllnessNeurobehavioral researchBrain structuresCognitive developmentAdolescentsAssessing Pediatric Cognitive Development via Multisensory Brain Imaging Analysis
Belyaeva I, Wang Y, Wilson T, Calhoun V, Stephen J, Adali T. Assessing Pediatric Cognitive Development via Multisensory Brain Imaging Analysis. 2015 23rd European Signal Processing Conference (EUSIPCO) 2024, 1362-1366. DOI: 10.23919/eusipco63174.2024.10714926.Peer-Reviewed Original ResearchFunctional magnetic resonance imagingFunctional magnetic resonance imaging dataMultisensory integrationSensory stimuliEffect of multisensory integrationMultisensory integration effectsMultiple sensory stimuliBrain imaging modalitiesCognitive developmentBrain image analysisBrain developmental patternsSensory modalitiesBrain componentsLearning paradigmMagnetoencephalographyMagnetic resonance imagingBrainDevelopmental patternsStimuliMultiple sensesCanonical polyadic tensor decompositionMultimodal data fusion frameworkAdolescentsMultitask learning paradigmPolyadic tensor decompositionA Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence
Zhang A, Zhang G, Cai B, Wilson T, Stephen J, Calhoun V, Wang Y. A Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence. Network Neuroscience 2024, 8: 791-807. PMID: 39355441, PMCID: PMC11349030, DOI: 10.1162/netn_a_00384.Peer-Reviewed Original ResearchPhiladelphia Neurodevelopmental CohortEmotional circuitryFunctional connectivityBrain's emotional circuitryEmotion identification skillBrain network organizationIndividuals aged 8Emotional processingEmotion perceptionBrain circuitsNeurodevelopmental CohortFMRI dataCognitive developmentIdentification skillsEmotional changesAged 8Adolescent stageAdolescentsNetwork organizationGroup-specific patternsIntermodular connectionsEmotionsCircuit developmentAccurate performanceBrainEfficient federated learning for distributed neuroimaging data
Thapaliya B, Ohib R, Geenjaar E, Liu J, Calhoun V, Plis S. Efficient federated learning for distributed neuroimaging data. Frontiers In Neuroinformatics 2024, 18: 1430987. PMID: 39315000, PMCID: PMC11416982, DOI: 10.3389/fninf.2024.1430987.Peer-Reviewed Original ResearchFederated learningCommunication overheadsSparse modelModel sparsityClient siteTraining phaseAdolescent Brain Cognitive DevelopmentData sharingEfficient communicationLarge modelsLocal trainingResource capabilitiesDatasetCommunicationLearningSparsityActual dataOverheadsPrivacyNeuroimaging dataCognitive developmentDataScientific communitySharingNeurodevelopmental subtypes of functional brain organization in the ABCD study using a rigorous analytic framework
DeRosa J, Friedman N, Calhoun V, Banich M. Neurodevelopmental subtypes of functional brain organization in the ABCD study using a rigorous analytic framework. NeuroImage 2024, 299: 120827. PMID: 39245397, DOI: 10.1016/j.neuroimage.2024.120827.Peer-Reviewed Original ResearchConceptsResting-state functional connectivityAdolescent Brain Cognitive DevelopmentIndividual’s resting-state functional connectivityAdolescent Brain Cognitive Development StudyFunctional brain organizationMental health profilesMental health characteristicsRsFC dataBrain organizationFunctional connectivityDevelopmental trajectoriesChildren aged 9Emotional functioningCognitive developmentLate childhoodAged 9SubtypesAdolescentsHealth characteristicsHealth profileChildhoodCognitive and psychiatric relevance of dynamic functional connectivity states in a large (N > 10,000) children population
Fu Z, Sui J, Iraji A, Liu J, Calhoun V. Cognitive and psychiatric relevance of dynamic functional connectivity states in a large (N > 10,000) children population. Molecular Psychiatry 2024, 1-12. PMID: 39085394, DOI: 10.1038/s41380-024-02683-6.Peer-Reviewed Original ResearchDynamic functional connectivity statesDynamic functional connectivityAdolescent Brain Cognitive DevelopmentCognitive performanceDynamic functional connectivity patternsSensory networksAnalysis of dynamic functional connectivityFunctional connectivity statesDefault-modeNeurological underpinningsAttention problemsPsychiatric relevanceFunctional connectivitySensorimotor networkMediation analysisCognitive developmentChild's brainBrain statesMental healthMental problemsBrain dynamicsSliding-window approachMental behaviorBrainCerebellumReplication and Refinement of Brain Age Model for Adolescent Development
Ray B, Chen J, Fu Z, Suresh P, Thapaliya B, Farahdel B, Calhoun V, Liu J. Replication and Refinement of Brain Age Model for Adolescent Development. 2024, 00: 1-5. DOI: 10.1109/isbi56570.2024.10635532.Peer-Reviewed Original ResearchBrain age modelAdolescent Brain Cognitive DevelopmentInformation processing speedBrain age gapABCD participantsBrain agingVerbal comprehension abilityEstimated brain ageEstimation of brain ageNeuropsychiatric problemsProcessing speedCognitive developmentAdolescent developmentAge gapComprehension abilityBrain developmentAge rangeBrainChronological ageAdolescentsParticipantsBaseline