2023
Rare X-linked variants carry predominantly male risk in autism, Tourette syndrome, and ADHD
Wang S, Wang B, Drury V, Drake S, Sun N, Alkhairo H, Arbelaez J, Duhn C, Bal V, Langley K, Martin J, Hoekstra P, Dietrich A, Xing J, Heiman G, Tischfield J, Fernandez T, Owen M, O’Donovan M, Thapar A, State M, Willsey A. Rare X-linked variants carry predominantly male risk in autism, Tourette syndrome, and ADHD. Nature Communications 2023, 14: 8077. PMID: 38057346, PMCID: PMC10700338, DOI: 10.1038/s41467-023-43776-0.Peer-Reviewed Original ResearchConceptsDamaging variantsHigh-confidence ASD risk genesExome-wide significanceRare genetic variationASD risk genesRare damaging variantsHemizygous natureWhole-exome sequencing studiesExome sequencing studiesGene discoveryMultiple neurodevelopmental disordersGenetic variationGenetic mechanismsChr XMale sex biasSequencing studiesChromosome XRisk genesTransmission disequilibrium testAttention-deficit/hyperactivity disorderASD probandsAutism spectrum disorderASD familiesSex biasInformative recombinations
2019
De Novo Damaging DNA Coding Mutations Are Associated With Obsessive-Compulsive Disorder and Overlap With Tourette’s Disorder and Autism
Cappi C, Oliphant ME, Péter Z, Zai G, Conceição do Rosário M, Sullivan CAW, Gupta AR, Hoffman EJ, Virdee M, Olfson E, Abdallah SB, Willsey AJ, Shavitt RG, Miguel EC, Kennedy JL, Richter MA, Fernandez TV. De Novo Damaging DNA Coding Mutations Are Associated With Obsessive-Compulsive Disorder and Overlap With Tourette’s Disorder and Autism. Biological Psychiatry 2019, 87: 1035-1044. PMID: 31771860, PMCID: PMC7160031, DOI: 10.1016/j.biopsych.2019.09.029.Peer-Reviewed Original Research
2018
Genetic Insights Into ADHD Biology
Hayman V, Fernandez TV. Genetic Insights Into ADHD Biology. Frontiers In Psychiatry 2018, 9: 251. PMID: 29930523, PMCID: PMC5999780, DOI: 10.3389/fpsyt.2018.00251.Peer-Reviewed Original ResearchGenome-wide sequencing effortsInteractive gene networksGene discoverySequencing effortsGene networksCandidate genesGenetic insightsExpression patternsBiological pathwaysGenesBiological networksGenetic contributionBiologyPathwayImportant insightsNominal statistical significanceEnrichmentGeneticsBiological underpinningsSynthaseNitric oxide synthaseNeurobiological disorderInsightsHuman developmentExpression
2016
Whole-exome sequencing in obsessive-compulsive disorder identifies rare mutations in immunological and neurodevelopmental pathways
Cappi C, Brentani H, Lima L, Sanders SJ, Zai G, Diniz BJ, Reis VN, Hounie AG, Conceição do Rosário M, Mariani D, Requena GL, Puga R, Souza-Duran FL, Shavitt RG, Pauls DL, Miguel EC, Fernandez TV. Whole-exome sequencing in obsessive-compulsive disorder identifies rare mutations in immunological and neurodevelopmental pathways. Translational Psychiatry 2016, 6: e764-e764. PMID: 27023170, PMCID: PMC4872454, DOI: 10.1038/tp.2016.30.Peer-Reviewed Original ResearchConceptsSingle nucleotide variantsPPI networkPathway analysisProtein-protein interaction networkGenome-wide association studiesNovo single nucleotide variantsParticular biological pathwaysRare genetic variationDisease gene prioritizationDirect molecular interactionWhole-exome sequencing studiesGene discoveryNetwork genesSpecific risk genesNetwork enrichmentGenetic variationInteraction networksGene prioritizationCandidate genesAssociation studiesBiological pathwaysSequencing platformsSequencing studiesWhole-exome sequencingGenes