1998
Seizures with Fever After Unprovoked Seizures: An Analysis in Children Followed from the Time of a First Febrile Seizure
Berg A, Darefsky A, Holford T, Shinnar S. Seizures with Fever After Unprovoked Seizures: An Analysis in Children Followed from the Time of a First Febrile Seizure. Epilepsia 1998, 39: 77-80. PMID: 9578016, DOI: 10.1111/j.1528-1157.1998.tb01277.x.Peer-Reviewed Original ResearchMeSH KeywordsAge of OnsetChildCohort StudiesEpilepsyFamilyFeverFollow-Up StudiesHumansPrognosisProportional Hazards ModelsProspective StudiesRecurrenceRisk FactorsSeizures, FebrileTerminology as TopicConceptsFirst febrile seizureFebrile seizuresUnprovoked seizuresFurther seizuresFirst unprovoked seizureRecurrent febrile seizuresCox regression modelBenign febrile seizuresInfluence recurrenceTime-dependent covariatesProspective cohortSecond seizureTreatment decisionsFeverSeizuresSubstantial riskRate ratioYoung childrenChildrenOnsetRegression modelsSmall proportionRiskPredictorsRecurrence
1995
Importance of events per independent variable in proportional hazards analysis I. Background, goals, and general strategy
Concato J, Peduzzi P, Holford T, Feinstein A. Importance of events per independent variable in proportional hazards analysis I. Background, goals, and general strategy. Journal Of Clinical Epidemiology 1995, 48: 1495-1501. PMID: 8543963, DOI: 10.1016/0895-4356(95)00510-2.Peer-Reviewed Original ResearchMeSH KeywordsComputer SimulationConnecticutCoronary Artery BypassCoronary DiseaseHumansMonte Carlo MethodProportional Hazards ModelsRisk FactorsSurvival RateImportance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates
Peduzzi P, Concato J, Feinstein A, Holford T. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. Journal Of Clinical Epidemiology 1995, 48: 1503-1510. PMID: 8543964, DOI: 10.1016/0895-4356(95)00048-8.Peer-Reviewed Original ResearchMeSH KeywordsComputer SimulationCoronary Artery BypassCoronary DiseaseHumansMonte Carlo MethodProportional Hazards ModelsRegression AnalysisReproducibility of ResultsRisk FactorsSurvival Rate
1993
The risk of determining risk with multivariable models.
Concato J, Feinstein A, Holford T. The risk of determining risk with multivariable models. Annals Of Internal Medicine 1993, 118: 201-10. PMID: 8417638, DOI: 10.7326/0003-4819-118-3-199302010-00009.Peer-Reviewed Original Research
1992
Risk Factors Predicting the Incidence of Second Primary Breast Cancer among Women Diagnosed with a First Primary Breast Cancer*
Bernstein J, Thompson W, Risch N, Holford T. Risk Factors Predicting the Incidence of Second Primary Breast Cancer among Women Diagnosed with a First Primary Breast Cancer*. American Journal Of Epidemiology 1992, 136: 925-936. PMID: 1456269, DOI: 10.1093/oxfordjournals.aje.a116565.Peer-Reviewed Original ResearchConceptsFirst primary breast cancerPrimary breast cancerSecond primary breast cancerContralateral breast cancerBreast cancerRisk factorsInitial tumorIncidence rateFirst primaryFirst prospective cohort studyAge-specific incidence ratesDirect patient interviewProspective cohort studySteroid Hormone StudySecond breast cancerEnd Results ProgramBenign breast biopsyProportional hazards modelSpecific risk factorsCohort studyTumor characteristicsLobular carcinomaResults ProgramPatient interviewsTreatment modalitiesThe Genetic Epidemiology of Second Primary Breast Cancer*
Bernstein J, Thompson W, Risch N, Holford T. The Genetic Epidemiology of Second Primary Breast Cancer*. American Journal Of Epidemiology 1992, 136: 937-948. PMID: 1456270, DOI: 10.1093/oxfordjournals.aje.a116566.Peer-Reviewed Original ResearchConceptsSecond primary breast cancerPrimary breast cancerContralateral breast cancerFirst primary breast cancerFirst-degree relativesBreast cancerFamily historyOvarian cancerMulti-center population-based case-control studyPopulation-based case-control studyAge-adjusted rate ratioSteroid Hormone StudyBilateral breast cancerEnd Results ProgramRate ratioCase-control studyCorresponding rate ratiosContralateral breastEndometrial cancerProspective studyResults ProgramSecond primaryCohort membersHigh riskHormone Study
1991
Intent-to-treat analysis and the problem of crossovers An example from the Veterans Administration coronary bypass surgery study
Peduzzi P, Detre K, Wittes J, Holford T. Intent-to-treat analysis and the problem of crossovers An example from the Veterans Administration coronary bypass surgery study. Journal Of Thoracic And Cardiovascular Surgery 1991, 101: 481-487. PMID: 1999942, DOI: 10.1016/s0022-5223(19)36731-5.Peer-Reviewed Original ResearchMeSH KeywordsActuarial AnalysisCoronary Artery BypassHumansProportional Hazards ModelsRandomized Controlled Trials as TopicResearch DesignSurvival AnalysisSurvival RateConceptsTreat analysisTreatment changesVeterans Administration Cooperative StudyDate of randomizationIschemic heart diseaseRandomized clinical trialsNew treatment groupEffect of treatmentStable anginaSurgical therapyMedical therapySurgical treatmentInitial treatmentSurgical interventionSurgery StudyMajor trialsHeart diseaseClinical trialsTreatment groupsCooperative StudySurvival dataTreatmentTherapyTrialsAdherence