2022
Deep learning–based attenuation correction for whole-body PET — a multi-tracer study with 18F-FDG, 68 Ga-DOTATATE, and 18F-Fluciclovine
Toyonaga T, Shao D, Shi L, Zhang J, Revilla EM, Menard D, Ankrah J, Hirata K, Chen MK, Onofrey JA, Lu Y. Deep learning–based attenuation correction for whole-body PET — a multi-tracer study with 18F-FDG, 68 Ga-DOTATATE, and 18F-Fluciclovine. European Journal Of Nuclear Medicine And Molecular Imaging 2022, 49: 3086-3097. PMID: 35277742, PMCID: PMC10725742, DOI: 10.1007/s00259-022-05748-2.Peer-Reviewed Original ResearchConceptsNeural networkNovel deep learningNet neural networkPET/CT datasetsImage analysis metricsPhysics-based loss functionDeep learningCT-derived attenuation mapAttenuation mapLoss functionAnalysis metricsDetail recoveryTumor volume estimationMLAACT datasetsOSEM algorithmNetworkAlgorithmAttenuation correctionCorrection framework
2019
A Novel Loss Function Incorporating Imaging Acquisition Physics for PET Attenuation Map Generation Using Deep Learning
Shi L, Onofrey J, Revilla E, Toyonaga T, Menard D, Ankrah J, Carson R, Liu C, Lu Y. A Novel Loss Function Incorporating Imaging Acquisition Physics for PET Attenuation Map Generation Using Deep Learning. Lecture Notes In Computer Science 2019, 11767: 723-731. DOI: 10.1007/978-3-030-32251-9_79.Peer-Reviewed Original ResearchAttenuation mapAttenuation correctionCT-based attenuation mapAnnihilation eventsPET attenuation correctionLine integral projectionsPET raw dataInaccurate attenuation correctionCT attenuation mapsPhysicsMaximum likelihood reconstructionAC errorsMotion resultsLikelihood reconstructionLoss functionLarge biasΜ-CT