2022
Rabphilin3A reduces integrin-dependent growth cone signaling to restrict axon regeneration after trauma
Sekine Y, Kannan R, Wang X, Strittmatter SM. Rabphilin3A reduces integrin-dependent growth cone signaling to restrict axon regeneration after trauma. Experimental Neurology 2022, 353: 114070. PMID: 35398339, PMCID: PMC9555232, DOI: 10.1016/j.expneurol.2022.114070.Peer-Reviewed Original ResearchConceptsAxon regenerationModerate spinal cord contusion injurySpinal cord contusion injuryTraumatic spinal cord injuryAdult mammalian central nervous systemGrowth conesRetinal ganglion cell axonsOptic nerve crushSpinal cord crush injuryGanglion cell axonsSpinal cord injuryMammalian central nervous systemCentral nervous systemCorticospinal axon regenerationContusion injuryAxonal sproutingCrush injuryNerve crushAxonal growth conesCord injuryAxon sproutingCell axonsProximal bodyNervous systemNeural repair
2018
Diltiazem Promotes Regenerative Axon Growth
Huebner EA, Budel S, Jiang Z, Omura T, Ho TS, Barrett L, Merkel JS, Pereira LM, Andrews NA, Wang X, Singh B, Kapur K, Costigan M, Strittmatter SM, Woolf CJ. Diltiazem Promotes Regenerative Axon Growth. Molecular Neurobiology 2018, 56: 3948-3957. PMID: 30232777, PMCID: PMC6424671, DOI: 10.1007/s12035-018-1349-5.Peer-Reviewed Original ResearchConceptsL-type calcium channel blockerDorsal root gangliaCentral nervous systemChondroitin sulfate proteoglycanAxon regenerationMouse dorsal root gangliaAdult central nervous systemHuman sensory neuronsCalcium channel blockersSpinal cord injuryRat cortical culturesCord injuryAxonal regrowthRoot gangliaCortical culturesChannel blockersRegenerative propensityRegenerative axon growthSensory neuronsNervous systemPharmacological enhancersAxon growthPermanent lossSulfate proteoglycanAxotomy
2017
Regulation of axonal regeneration by the level of function of the endogenous Nogo receptor antagonist LOTUS
Hirokawa T, Zou Y, Kurihara Y, Jiang Z, Sakakibara Y, Ito H, Funakoshi K, Kawahara N, Goshima Y, Strittmatter SM, Takei K. Regulation of axonal regeneration by the level of function of the endogenous Nogo receptor antagonist LOTUS. Scientific Reports 2017, 7: 12119. PMID: 28935984, PMCID: PMC5608707, DOI: 10.1038/s41598-017-12449-6.Peer-Reviewed Original ResearchConceptsSpinal cord injuryOptic nerve crushAxonal regenerationMotor recoveryNerve crushNeural repairRetinal ganglion cell axonal regenerationAdult mammalian central nervous systemIntrinsic motor recoverySpontaneous neural repairAxonal growth inhibitorsMammalian central nervous systemCentral nervous systemNon-permissive environmentLevel of functionUntreated miceFunctional recoveryCord injuryReceptor antagonistNeuronal overexpressionNervous systemGenetic deletionViral overexpressionCrushInhibitorsIdentification of Intrinsic Axon Growth Modulators for Intact CNS Neurons after Injury
Fink KL, López-Giráldez F, Kim IJ, Strittmatter SM, Cafferty WB. Identification of Intrinsic Axon Growth Modulators for Intact CNS Neurons after Injury. Cell Reports 2017, 18: 2687-2701. PMID: 28297672, PMCID: PMC5389739, DOI: 10.1016/j.celrep.2017.02.058.Peer-Reviewed Original ResearchConceptsSpinal cord injuryCentral nervous systemFunctional recoveryIntact neuronsAdult mammalian central nervous systemPartial spinal cord injuryInjury-induced sproutingUnilateral brainstem lesionsGreater functional recoverySpontaneous functional recoveryCorticospinal motor neuronsCorticospinal tract axonsMammalian central nervous systemWild-type miceNew synapse formationGrowth modulatorsAdjacent injuryBrainstem lesionsCord injuryFunctional deficitsIntact circuitryCNS neuronsMotor neuronsCircuit plasticityNervous system
2014
Progressive retinal degeneration and accumulation of autofluorescent lipopigments in Progranulin deficient mice
Hafler BP, Klein ZA, Zhou Z, Strittmatter SM. Progressive retinal degeneration and accumulation of autofluorescent lipopigments in Progranulin deficient mice. Brain Research 2014, 1588: 168-174. PMID: 25234724, PMCID: PMC4254024, DOI: 10.1016/j.brainres.2014.09.023.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedElectroretinographyGranulinsImmunohistochemistryIntercellular Signaling Peptides and ProteinsMice, Inbred C57BLMice, KnockoutMicroscopy, ConfocalNeuronal Ceroid-LipofuscinosesOptical ImagingPhotoreceptor Cells, VertebrateProgranulinsRetinal DegenerationRetinal Ganglion CellsConceptsProgranulin-deficient miceNeuronal ceroid lipofuscinosisAdult-onset neuronal ceroid lipofuscinosisDeficient miceRetinal degenerationCeroid lipofuscinosisRetinal ganglion cellsCentral nervous systemAutofluorescent storage materialMotor dysfunctionNeuropathological analysisGanglion cellsVision lossOptic atrophyEarly deathAutofluorescent lipopigmentsClinical observationsNervous systemDegenerative pathologyMiceDegenerationHomozygous mutationAutofluorescent materialPatientsNeuronsThe Nogo Receptor NgR1 Mediates Infection by Mammalian Reovirus
Konopka-Anstadt JL, Mainou BA, Sutherland DM, Sekine Y, Strittmatter SM, Dermody TS. The Nogo Receptor NgR1 Mediates Infection by Mammalian Reovirus. Cell Host & Microbe 2014, 15: 681-691. PMID: 24922571, PMCID: PMC4100558, DOI: 10.1016/j.chom.2014.05.010.Peer-Reviewed Original ResearchConceptsCentral nervous systemReceptor NgR1Reovirus infectionExpression of NgR1Primary cortical neuronsDistinct cell surface moleculesJunctional adhesion molecule ASoluble NgR1Cell surface moleculesNeurotropic virusesCortical neuronsMammalian reovirusesNonsusceptible cellsNervous systemNgR1Null miceSystemic spreadInfectionIndependent receptorsMultiple receptorsReovirus replicationInitial siteReovirus virionsNeuronsReceptors
2010
Chapter 240 Semaphorins and their Receptors in Vertebrates and Invertebrates
Schmidt E, Togashi H, Strittmatter S. Chapter 240 Semaphorins and their Receptors in Vertebrates and Invertebrates. 2010, 1961-1966. DOI: 10.1016/b978-0-12-374145-5.00240-0.Peer-Reviewed Original ResearchExpression of Sema4DDorsal root gangliaTypes of neuronsNon-neuronal cellsT lymphocyte activationCentral nervous system developmentMalignant lung cellsNeuronal cell migrationAxon guidance factorsRoot gangliaNervous system developmentCardiovascular abnormalitiesImmune responseNerve bundlesAxoplasmic transportNervous systemImmune systemCardiovascular systemLung cellsAdult animalsAxonsReduced levelsSemaphorinsGuidance factorsCell migration
2009
Axon Regeneration in the Peripheral and Central Nervous Systems
Huebner EA, Strittmatter SM. Axon Regeneration in the Peripheral and Central Nervous Systems. Results And Problems In Cell Differentiation 2009, 48: 305-360. PMID: 19582408, PMCID: PMC2846285, DOI: 10.1007/400_2009_19.Peer-Reviewed Original ResearchConceptsCentral nervous systemPeripheral nervous systemSpinal cord injuryNervous systemAxon regenerationLong-distance axon regenerationMature mammalian central nervous systemMammalian peripheral nervous systemSubstantial functional recoveryMammalian central nervous systemTraumatic brain injuryIntrinsic growth capacityFunctional recoveryCord injuryAxonal disconnectionFunctional deficitsBrain injuryRelated conditionsInjuryRegenerative successExtracellular moleculesGrowth capacityStroke
2007
Nogo receptor interacts with brain APP and Abeta to reduce pathologic changes in Alzheimer's transgenic mice.
Park JH, Strittmatter SM. Nogo receptor interacts with brain APP and Abeta to reduce pathologic changes in Alzheimer's transgenic mice. Current Alzheimer Research 2007, 4: 568-70. PMID: 18220524, PMCID: PMC2846284, DOI: 10.2174/156720507783018235.Peer-Reviewed Original ResearchConceptsTransgenic miceAlzheimer's diseasePlaque depositionAdult central nervous systemAlzheimer's transgenic miceNogo-66 receptorAmyloid β plaquesCentral nervous systemAxonal sproutingAβ accumulationΒ plaquesDystrophic neuritesPathologic changesNogo receptorNervous systemBrain APPDiseasePotential mechanistic basisMiceExpression increasesNGR modificationReceptorsNeurite responseNGRMechanistic basisToll-Like Receptor 3 Is a Potent Negative Regulator of Axonal Growth in Mammals
Cameron JS, Alexopoulou L, Sloane JA, DiBernardo AB, Ma Y, Kosaras B, Flavell R, Strittmatter SM, Volpe J, Sidman R, Vartanian T. Toll-Like Receptor 3 Is a Potent Negative Regulator of Axonal Growth in Mammals. Journal Of Neuroscience 2007, 27: 13033-13041. PMID: 18032677, PMCID: PMC4313565, DOI: 10.1523/jneurosci.4290-06.2007.Peer-Reviewed Original ResearchConceptsToll-like receptor 3Functional toll-like receptor 3Poly IActivation of TLR3Nervous systemInnate immunityReceptor 3Pattern recognition receptor functionAxonal growthDorsal root gangliaFunction of TLRsToll-like receptorsPeripheral nervous systemMammalian Toll-like receptorsPattern recognition receptorsViral double-stranded RNAClasses of receptorsNuclear factor kappaB.Sensorimotor deficitsRoot gangliaNeonatal miceNeurodegenerative effectsGrowth cone collapseCNS regenerationRecognition receptors
2006
Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury?
Harel NY, Strittmatter SM. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nature Reviews Neuroscience 2006, 7: 603-616. PMID: 16858389, PMCID: PMC2288666, DOI: 10.1038/nrn1957.Peer-Reviewed Original ResearchConceptsCNS regenerationNervous systemCentral pattern generatorImmature nervous systemSpinal cord injuryRegeneration-associated genesMammalian CNS regenerationContext of injuryExperience-dependent plasticityFurther plastic changesInflammatory cellsCord injuryVoluntary inputNervous system developmentRegenerating axonsSensory feedbackInhibitory barrierPlastic changesInhibitory moleculesRegenerative responseGuidance moleculesAltered distributionNeuronal branchesInjuryGuidance factorsExtracellular regulators of axonal growth in the adult central nervous system
Liu BP, Cafferty WB, Budel SO, Strittmatter SM. Extracellular regulators of axonal growth in the adult central nervous system. Philosophical Transactions Of The Royal Society B Biological Sciences 2006, 361: 1593-1610. PMID: 16939977, PMCID: PMC1664666, DOI: 10.1098/rstb.2006.1891.Peer-Reviewed Original ResearchConceptsAxonal growth inhibitorsAxonal sproutingCNS injuryAdult CNSAxonal growthAdult central nervous systemAdult CNS injuryCentral nervous system functionRecovery of functionRobust axonal growthAstroglial scar formationAdult CNS axonsCentral nervous systemOligodendrocyte myelin glycoproteinNervous system functionNeurological functionPathological damageAxonal stabilityNervous systemScar formationAxonal receptorsNeuronal connectivityCNS axonsEphrin-B3Such interventions
2005
Effect of combined treatment with methylprednisolone and soluble Nogo‐66 receptor after rat spinal cord injury
Ji B, Li M, Budel S, Pepinsky RB, Walus L, Engber TM, Strittmatter SM, Relton JK. Effect of combined treatment with methylprednisolone and soluble Nogo‐66 receptor after rat spinal cord injury. European Journal Of Neuroscience 2005, 22: 587-594. PMID: 16101740, PMCID: PMC2846292, DOI: 10.1111/j.1460-9568.2005.04241.x.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAxonsBehavior, AnimalBiotinCells, CulturedChick EmbryoDextransDisease Models, AnimalDose-Response Relationship, DrugDrug InteractionsDrug Therapy, CombinationExploratory BehaviorFemaleGanglia, SpinalGPI-Linked ProteinsImmunoglobulin GLaminectomyMethylprednisoloneMyelin ProteinsMyelin SheathNerve RegenerationNeuronsNogo Receptor 1Pyramidal TractsRatsRats, Long-EvansReceptors, Cell SurfaceReceptors, PeptideRecombinant ProteinsRecovery of FunctionSpinal Cord InjuriesConceptsSpinal cord injuryCord injuryRat spinal cord injuryMP treatmentAdult central nervous systemThoracic dorsal hemisectionNovel experimental therapiesCorticospinal tract axonsRecovery of functionNogo-66 receptorNumber of axonsCentral nervous systemGrowth inhibitory effectsDorsal hemisectionBBB scoresAxonal sproutingFunctional recoveryBresnahan (BBB) scoringAxonal regenerationMotor neuronsExperimental therapiesMethylprednisoloneSynthetic glucocorticoidNervous systemAxonal growthChapter 26 Promoting the Regeneration of Axons within the Central Nervous System
Park J, Strittmatter S. Chapter 26 Promoting the Regeneration of Axons within the Central Nervous System. 2005, 433-xviii. DOI: 10.1016/b978-012738903-5/50027-8.Peer-Reviewed Original ResearchCentral nervous systemSpinal cord injuryNervous systemPeripheral nervous system axonsPNS Schwann cellsPermanent functional deficitsRegeneration of axonsRegenerative capacityLittle functional recoveryFunctional recoveryCell transplantationCord injuryAxonal regenerationFunctional deficitsPNS neuronsCNS gliaSchwann cellsAxon regenerationCombinatorial treatmentTransplantation studiesPromising targetAxonsKinase inhibitionInjuryProteoglycan digestion
2004
Regulating axon growth within the postnatal central nervous system
Hu F, Strittmatter SM. Regulating axon growth within the postnatal central nervous system. Seminars In Perinatology 2004, 28: 371-378. PMID: 15693393, DOI: 10.1053/j.semperi.2004.10.001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCentral Nervous SystemGPI-Linked ProteinsGrowth InhibitorsHumansHypoxiaIntracellular Signaling Peptides and ProteinsMembrane ProteinsMiceMyelin ProteinsMyelin-Associated GlycoproteinMyelin-Oligodendrocyte GlycoproteinNerve RegenerationNerve Tissue ProteinsNogo ProteinsNogo Receptor 1Receptor, Nerve Growth FactorReceptors, Cell SurfaceConceptsCentral nervous systemAxonal growthNervous systemNeuronal developmentAdult central nervous systemMature central nervous systemAxon growth inhibitorsPostnatal central nervous systemPotential therapeutic interventionsNew neuronal connectionsMyelin-derived proteinsAxonal sproutingDirect blockadeNgR proteinPostnatal brainNeuronal connectionsTherapeutic interventionsAxon growthDevelopmental hypoxiaReduced expressionMyelin proteinsHypoxic conditionsInhibitor pathwayImportant investigationCritical roleA new role for Nogo as a regulator of vascular remodeling
Acevedo L, Yu J, Erdjument-Bromage H, Miao RQ, Kim JE, Fulton D, Tempst P, Strittmatter SM, Sessa WC. A new role for Nogo as a regulator of vascular remodeling. Nature Medicine 2004, 10: 382-388. PMID: 15034570, DOI: 10.1038/nm1020.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsVascular remodelingMuscle cellsVascular smooth muscle cellsCentral nervous systemIntact blood vesselsVascular injuryAxonal regenerationNeointimal proliferationMice promotesKnockout miceNervous systemVascular homeostasisFamily of proteinsVascular expansionEndothelial cellsBlood vesselsNogoNogo isoformsLipid raftsProteomic analysisN-terminusRemodelingGene transferCells
2003
Targeting the Nogo Receptor to Treat Central Nervous System Injuries
Lee DH, Strittmatter SM, Sah DW. Targeting the Nogo Receptor to Treat Central Nervous System Injuries. Nature Reviews Drug Discovery 2003, 2: 872-879. PMID: 14668808, DOI: 10.1038/nrd1228.Peer-Reviewed Original ResearchConceptsCentral nervous systemAxonal regrowthNogo receptorCentral nervous system injuryNovel drug discovery strategyCNS myelinNervous system injurySpinal cord injuryTraumatic head injuryLarge unmet needOligodendrocyte myelin glycoproteinAxonal damageSystem injuryCNS injuryCord injuryAxonal regenerationHead injuryCNS neuronsGrowth cone collapseSuch injuriesAxon regrowthNervous systemUnmet needDrug discovery strategiesInjuryNogo-C is sufficient to delay nerve regeneration
Kim J, Bonilla IE, Qiu D, Strittmatter SM. Nogo-C is sufficient to delay nerve regeneration. Molecular And Cellular Neuroscience 2003, 23: 451-459. PMID: 12837628, DOI: 10.1016/s1044-7431(03)00076-9.Peer-Reviewed Original ResearchConceptsAxonal regenerationTransgenic miceSciatic nerve injurySciatic nerve crushAxon growth inhibitorsWild-type miceCentral nervous systemC transgenic miceDecreased recovery ratePeripheral Schwann cellsNerve injuryNerve crushMotor functionPeripheral clearanceSchwann cellsCNS expressionNerve regenerationNervous systemAdult mammalsMiceNogoCellsGrowth inhibitorExpressionInjury
2002
Modulation of axonal regeneration in neurodegenerative disease
Strittmatter SM. Modulation of axonal regeneration in neurodegenerative disease. Journal Of Molecular Neuroscience 2002, 19: 117-121. PMID: 12212768, DOI: 10.1007/s12031-002-0021-7.Peer-Reviewed Original ResearchMyelin-Associated Glycoprotein as a Functional Ligand for the Nogo-66 Receptor
Liu BP, Fournier A, GrandPré T, Strittmatter SM. Myelin-Associated Glycoprotein as a Functional Ligand for the Nogo-66 Receptor. Science 2002, 297: 1190-1193. PMID: 12089450, DOI: 10.1126/science.1073031.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsBinding SitesChick EmbryoCloning, MolecularCOS CellsGanglia, SpinalGene LibraryGPI-Linked ProteinsLigandsMiceMyelin ProteinsMyelin-Associated GlycoproteinNerve RegenerationNeuritesNeuronsNogo ProteinsNogo Receptor 1Peptide FragmentsPhosphatidylinositol Diacylglycerol-LyaseProtein Structure, TertiaryReceptors, Cell SurfaceRecombinant Fusion ProteinsSialic AcidsTransfectionType C Phospholipases