New Horizons in Nuclear Cardiology: Imaging of Peripheral Arterial Disease
Callegari S, Mena-Hurtado C, Smolderen K, Thorn S, Sinusas A. New Horizons in Nuclear Cardiology: Imaging of Peripheral Arterial Disease. Journal Of Nuclear Cardiology 2024, 102079. PMID: 39549830, DOI: 10.1016/j.nuclcard.2024.102079.Peer-Reviewed Original ResearchPeripheral arterial diseaseDiagnostic modalitiesRisk stratificationArtery diseaseEarly diagnosisImprove risk stratificationAssociated with higher ratesLower extremity peripheral arterial diseaseEvaluation of therapyClinically relevant areasPreclinical modelsObstructive atherosclerotic diseaseClinical studiesArtery stenosisMicrovascular diseasePreprocedural assessmentPeripheral vasculaturePET imagingAtherosclerotic diseaseNuclear cardiologyTherapeutic interventionsClinical diseaseDiseaseComplex physiologyPerfusionComparative study of functional and structural muscle changes in peripheral artery disease: rubidium-82 positron emission tomography and histological correlation
Alashi A, Vermillion B, Callegari S, Burns R, Guo L, Moulton E, Guerrera N, Depino A, Papademetris X, Zeiss C, Thorn S, Liu C, Sinusas A. Comparative study of functional and structural muscle changes in peripheral artery disease: rubidium-82 positron emission tomography and histological correlation. European Heart Journal - Cardiovascular Imaging 2024, 25: jeae142.087. DOI: 10.1093/ehjci/jeae142.087.Peer-Reviewed Original ResearchPeripheral arterial diseaseStandardized uptake valueHindlimb ischemia modelReactive hyperemiaSkeletal muscle perfusionPerfusion reserveCapillary densityPET imagingArtery diseaseNon-ischemicRubidium-82 positron emission tomographyType 2 muscle fibersRelevant pre-clinical modelIndicative of fibrosisManagement of peripheral arterial diseaseCapillary to muscle fiber ratioClinically relevant pre-clinical modelPre-clinical modelsMuscle perfusionFast myosinWeeks post-ligationRb-82 uptakeEvaluate treatment strategiesRabbit hindlimb ischemia modelPositron emission tomography