2020
Cyclin-Dependent Kinase 1 Activity Is a Driver of Cyst Growth in Polycystic Kidney Disease
Zhang C, Balbo B, Ma M, Zhao J, Tian X, Kluger Y, Somlo S. Cyclin-Dependent Kinase 1 Activity Is a Driver of Cyst Growth in Polycystic Kidney Disease. Journal Of The American Society Of Nephrology 2020, 32: 41-51. PMID: 33046531, PMCID: PMC7894654, DOI: 10.1681/asn.2020040511.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCatalytic DomainCDC2 Protein KinaseCell ProliferationCrosses, GeneticDNA ReplicationExome SequencingFemaleGene Expression ProfilingGene Expression RegulationMaleMiceMice, Inbred C57BLMice, KnockoutMutationPhenotypePolycystic Kidney, Autosomal DominantPyruvate Dehydrogenase Acetyl-Transferring KinaseRNA-SeqTranscription, GeneticTRPP Cation ChannelsConceptsAutosomal dominant polycystic kidney diseaseCyst cell proliferationPolycystic kidney diseaseKidney diseaseADPKD progressionCell proliferationModel of ADPKDCyst growthProgression of ADPKDDominant polycystic kidney diseaseDouble knockout miceCandidate pathwaysKidney functionCyst progressionMouse modelUnbiased transcriptional profilingProgressionCellular mechanismsKinase 1 activityCystic phenotypeSelective targetingKidneyConditional inactivationDouble knockoutProliferation
2019
Spliced XBP1 Rescues Renal Interstitial Inflammation Due to Loss of Sec63 in Collecting Ducts
Ishikawa Y, Fedeles S, Marlier A, Zhang C, Gallagher AR, Lee AH, Somlo S. Spliced XBP1 Rescues Renal Interstitial Inflammation Due to Loss of Sec63 in Collecting Ducts. Journal Of The American Society Of Nephrology 2019, 30: 443-459. PMID: 30745418, PMCID: PMC6405156, DOI: 10.1681/asn.2018060614.Peer-Reviewed Original ResearchKidney injuryInterstitial inflammationKidney functional declineChronic kidney injuryRenal interstitial inflammationAutosomal dominant polycystic liver diseasePolycystic liver diseaseDistal nephron segmentsDouble knockout micePolycystic kidney diseaseEndoplasmic reticulum stressOvert activationRenal effectsKidney functionLiver diseaseKidney diseaseNeonatal miceFunctional declineNovel genetic modelMyofibroblast activationKnockout miceDisparate etiologiesLate onsetCollecting ductsNephron segments
2017
Adenylyl cyclase 5 deficiency reduces renal cyclic AMP and cyst growth in an orthologous mouse model of polycystic kidney disease
Wang Q, Cobo-Stark P, Patel V, Somlo S, Han PL, Igarashi P. Adenylyl cyclase 5 deficiency reduces renal cyclic AMP and cyst growth in an orthologous mouse model of polycystic kidney disease. Kidney International 2017, 93: 403-415. PMID: 29042084, PMCID: PMC5794572, DOI: 10.1016/j.kint.2017.08.005.Peer-Reviewed Original ResearchConceptsPolycystic kidney diseaseOrthologous mouse modelSingle mutant miceMutant miceRenal epithelial cellsCyst growthCAMP levelsKidney diseaseEpithelial cellsMouse modelTreatment of PKDA-kinase anchoring protein 150Renal cyclic AMPKidneys of miceCyclic AMPDouble mutant miceRenal cAMP levelsInhibition of AC5Kidney injuryLevels of cAMPPrimary ciliaKidney enlargementKidney functionCyst indexMice
2014
The Kidney Research National Dialogue: Gearing Up to Move Forward
Bonventre JV, Boulware LE, Dember LM, Freedman BI, Furth SL, Holzman LB, Ketchum CJ, Little MH, Mehrotra R, Moe SM, Sands JM, Sedor JR, Somlo S, Star RA, Rys-Sikora KE. The Kidney Research National Dialogue: Gearing Up to Move Forward. Clinical Journal Of The American Society Of Nephrology 2014, 9: 1806-1811. PMID: 25225184, PMCID: PMC4186514, DOI: 10.2215/cjn.07310714.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomedical ResearchCareer ChoiceCooperative BehaviorDiffusion of InnovationEducation, MedicalHealth PrioritiesHumansInterdisciplinary CommunicationInternational CooperationKidney DiseasesNational Institute of Diabetes and Digestive and Kidney Diseases (U.S.)NephrologyPrognosisRisk FactorsUnited StatesConceptsKidney Research National DialogueKidney functionKidney diseaseNational InstituteInterventional studyTreatment strategiesClinical investigationTrial designResponsive outcomesDiseaseNephrology workforceCommunity implementationDiabetesFoster translationDigestiveEntire seriesKidney biologyAdditional reviewKidney researchNational dialogueSeries of commentariesFuture research effortsDiagnosisDiscovery researchPreventionFilling the Holes in Cystic Kidney Disease Research
Guay-Woodford LM, Henske E, Igarashi P, Perrone RD, Reed-Gitomer B, Somlo S, Torres VE, Ketchum CJ, Star RA, Flessner MF, Rasooly RS. Filling the Holes in Cystic Kidney Disease Research. Clinical Journal Of The American Society Of Nephrology 2014, 9: 1799-1801. PMID: 24903391, PMCID: PMC4186512, DOI: 10.2215/cjn.03410414.Peer-Reviewed Original ResearchConceptsKidney diseaseCystic kidney diseaseKidney Research National DialoguePublic health problemKidney disease researchKidney functionDisease progressionCystic diseaseHealth problemsDiseaseCyst formationNational InstituteDisease researchVariable responseDiabetesPathogenesisDigestiveProgressionPreventionSteviol retards renal cyst growth through reduction of CFTR expression and inhibition of epithelial cell proliferation in a mouse model of polycystic kidney disease
Yuajit C, Muanprasat C, Gallagher AR, Fedeles SV, Kittayaruksakul S, Homvisasevongsa S, Somlo S, Chatsudthipong V. Steviol retards renal cyst growth through reduction of CFTR expression and inhibition of epithelial cell proliferation in a mouse model of polycystic kidney disease. Biochemical Pharmacology 2014, 88: 412-421. PMID: 24518257, DOI: 10.1016/j.bcp.2014.01.038.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseasePolycystic kidney diseaseRenal cyst growthCyst-lining epithelial cellsMouse modelKidney diseaseEpithelial cell proliferationEffect of steviolCyst enlargementCyst growthCell proliferationEpithelial cellsBlood urea nitrogenHuman autosomal dominant polycystic kidney diseaseDominant polycystic kidney diseaseOrthologous mouse modelChloride channel expressionRenal epithelial cell proliferationTransepithelial fluid secretionADPKD mouse modelRenal failureKidney functionKidney weightDaily treatmentCreatinine values