2023
First-Line Treatment of Driver-Negative Non–Small Cell Lung Cancer
Kim S, Gettinger S. First-Line Treatment of Driver-Negative Non–Small Cell Lung Cancer. Hematology/Oncology Clinics Of North America 2023, 37: 557-573. PMID: 37150586, DOI: 10.1016/j.hoc.2023.02.008.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerCell lung cancerLung cancerAdvanced non-small cell lung cancerFirst-line settingFirst-line treatmentStandard of careCombination immunotherapyImmunotherapy monotherapyPD-L1Immunotherapy responseLine treatmentSmoking statusTreatment choiceTrial dataCancerImmunotherapyRegimensCliniciansTreatmentChemoimmunotherapyMonotherapyCareNovel Approaches for Dynamic Visualization of Adverse Event Data in Oncology Clinical Trials: A Case Study Using Immunotherapy Trial S1400-I (SWOG).
Lee S, Fan W, Wang A, Vaidya R, Redman M, Gettinger S, Bazhenova L, Herbst R, Hershman D, Unger J. Novel Approaches for Dynamic Visualization of Adverse Event Data in Oncology Clinical Trials: A Case Study Using Immunotherapy Trial S1400-I (SWOG). JCO Clinical Cancer Informatics 2023, 7: e2200165. PMID: 37084329, PMCID: PMC10281446, DOI: 10.1200/cci.22.00165.Peer-Reviewed Original ResearchConceptsSystem organ classAdverse event dataRandomized phase III trialPhase III trialsCell lung cancerOncology clinical trialsOverall toxicity profileIII trialsNeurologic toxicityTreatment armsCardiac toxicityLung cancerClinical trialsGrade 3High prevalenceOrgan classToxicity profileNivolumabTreatment groupsStage IVEndocrine toxicityType of AEToxicity typesAE termsIpilimumab
2022
Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology.
Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac LR, D'Amico TA, DeCamp M, Dilling TJ, Dowell J, Gettinger S, Grotz TE, Gubens MA, Hegde A, Lackner RP, Lanuti M, Lin J, Loo BW, Lovly CM, Maldonado F, Massarelli E, Morgensztern D, Ng T, Otterson GA, Pacheco JM, Patel SP, Riely GJ, Riess J, Schild SE, Shapiro TA, Singh AP, Stevenson J, Tam A, Tanvetyanon T, Yanagawa J, Yang SC, Yau E, Gregory K, Hughes M. Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. Journal Of The National Comprehensive Cancer Network 2022, 20: 497-530. PMID: 35545176, DOI: 10.6004/jnccn.2022.0025.Peer-Reviewed Original ResearchMeSH KeywordsCarcinoma, Non-Small-Cell LungHumansImmunotherapyLung NeoplasmsMedical OncologyNeoplasm Recurrence, LocalConceptsNon-small cell lung cancerNCCN Clinical Practice GuidelinesCell lung cancerClinical practice guidelinesLung cancerPractice guidelinesMetastatic non-small cell lung cancerMetastatic lung cancerNCCN guidelinesPrimary treatmentTargeted therapyActionable mutationsPatientsCancerSubsequent treatmentTherapyOncologyTreatmentGuidelinesImmunotherapyRelapseDiagnosis
2021
Clinical definition of acquired resistance to immunotherapy in patients with metastatic non-small-cell lung cancer
Schoenfeld A, Antonia S, Awad M, Felip E, Gainor J, Gettinger S, Hodi F, Johnson M, Leighl N, Lovly C, Mok T, Perol M, Reck M, Solomon B, Soria J, Tan D, Peters S, Hellmann M. Clinical definition of acquired resistance to immunotherapy in patients with metastatic non-small-cell lung cancer. Annals Of Oncology 2021, 32: 1597-1607. PMID: 34487855, DOI: 10.1016/j.annonc.2021.08.2151.Peer-Reviewed Original ResearchConceptsCell lung cancerClinical definitionAcquired ResistanceLung cancerClinical trialsCell death protein 1/Death protein 1/Consistent clinical definitionPersistent antitumor immunityProspective clinical trialsInvestigational immunotherapiesAntitumor immunityObjective responseProgressive diseaseAntibody treatmentNSCLC biologyInitial respondersTreatment strategiesClinical reportsPatientsBlockadeImmunotherapyTherapeutic discoveryCancerUniform criteriaFive-Year Outcomes From the Randomized, Phase III Trials CheckMate 017 and 057: Nivolumab Versus Docetaxel in Previously Treated Non–Small-Cell Lung Cancer
Borghaei H, Gettinger S, Vokes EE, Chow LQM, Burgio MA, de Castro Carpeno J, Pluzanski A, Arrieta O, Frontera OA, Chiari R, Butts C, Wójcik-Tomaszewska J, Coudert B, Garassino MC, Ready N, Felip E, García MA, Waterhouse D, Domine M, Barlesi F, Antonia S, Wohlleber M, Gerber DE, Czyzewicz G, Spigel DR, Crino L, Eberhardt WEE, Li A, Marimuthu S, Brahmer J. Five-Year Outcomes From the Randomized, Phase III Trials CheckMate 017 and 057: Nivolumab Versus Docetaxel in Previously Treated Non–Small-Cell Lung Cancer. Journal Of Clinical Oncology 2021, 39: 723-733. PMID: 33449799, PMCID: PMC8078445, DOI: 10.1200/jco.20.01605.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overCarcinoma, Non-Small-Cell LungClinical Trials, Phase III as TopicDisease ProgressionDocetaxelFemaleHumansImmune Checkpoint InhibitorsImmunotherapyLung NeoplasmsMaleMiddle AgedNivolumabProgression-Free SurvivalRandomized Controlled Trials as TopicTime FactorsTubulin ModulatorsYoung AdultConceptsTreatment-related adverse eventsNivolumab-treated patientsProgression-free survivalPhase III trialsOverall survivalCheckMate 017Advanced NSCLCIII trialsOS ratesLung cancerGrade 4 treatment-related adverse eventsFirst-line platinum-based chemotherapyNon-small cell lung cancerRandomized phase III trialEnd pointDeath-1 inhibitorsDocetaxel-treated patientsExploratory landmark analysisPrimary end pointSecondary end pointsFive-year outcomesNew safety signalsPlatinum-based chemotherapyCell lung cancerECOG PS
2020
Biomarkers Associated with Beneficial PD-1 Checkpoint Blockade in Non–Small Cell Lung Cancer (NSCLC) Identified Using High-Plex Digital Spatial Profiling
Zugazagoitia J, Gupta S, Liu Y, Fuhrman K, Gettinger S, Herbst RS, Schalper KA, Rimm DL. Biomarkers Associated with Beneficial PD-1 Checkpoint Blockade in Non–Small Cell Lung Cancer (NSCLC) Identified Using High-Plex Digital Spatial Profiling. Clinical Cancer Research 2020, 26: 4360-4368. PMID: 32253229, PMCID: PMC7442721, DOI: 10.1158/1078-0432.ccr-20-0175.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerPD-1 checkpoint blockadeCell lung cancerCheckpoint blockadeLung cancerAdvanced non-small cell lung cancerUnivariate unadjusted analysisProgression-free survivalImmune cell countsMinority of patientsRobust predictive biomarkersBiomarkers of responseLarge independent cohortsSpatial profiling technologyDigital spatial profilingDigital spatial profiling (DSP) technologyOverall survivalClinical outcomesImmune predictorsHigher CD56NSCLC casesPredictive biomarkersUnadjusted analysesImmune parametersTissue microarrayBempegaldesleukin (NKTR-214) plus Nivolumab in Patients with Advanced Solid Tumors: Phase I Dose-Escalation Study of Safety, Efficacy, and Immune Activation (PIVOT-02)
Diab A, Tannir NM, Bentebibel SE, Hwu P, Papadimitrakopoulou V, Haymaker C, Kluger HM, Gettinger SN, Sznol M, Tykodi SS, Curti BD, Tagliaferri MA, Zalevsky J, Hannah AL, Hoch U, Aung S, Fanton C, Rizwan A, Iacucci E, Liao Y, Bernatchez C, Hurwitz ME, Cho DC. Bempegaldesleukin (NKTR-214) plus Nivolumab in Patients with Advanced Solid Tumors: Phase I Dose-Escalation Study of Safety, Efficacy, and Immune Activation (PIVOT-02). Cancer Discovery 2020, 10: 1158-1173. PMID: 32439653, DOI: 10.1158/2159-8290.cd-19-1510.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntineoplastic Agents, ImmunologicalAntineoplastic Combined Chemotherapy ProtocolsCarcinoma, Non-Small-Cell LungCarcinoma, Renal CellFemaleGene Expression Regulation, NeoplasticHumansImmune Checkpoint InhibitorsImmunotherapyInterleukin-2Kidney NeoplasmsLung NeoplasmsLymphocyte CountLymphocytes, Tumor-InfiltratingMaleMelanomaMiddle AgedNivolumabPolyethylene GlycolsProgrammed Cell Death 1 ReceptorTreatment OutcomeYoung AdultConceptsTreatment-related adverse eventsAdvanced solid tumorsPD-L1 statusSolid tumorsGrade 3/4 treatment-related adverse eventsPD-1/PD-L1 blockadeCommon treatment-related adverse eventsPhase I dose-escalation trialPoor prognostic risk factorsTotal objective response rateI dose-escalation studyI dose-escalation trialLongitudinal tumor biopsiesPD-L1 blockadeT-cell enhancementTreatment-related deathsObjective response ratePhase II doseDose-escalation studyDose-escalation trialDose-limiting toxicityFlu-like symptomsPrognostic risk factorsTumor-infiltrating lymphocytesCytotoxicity of CD8Differential effects of PD-L1 versus PD-1 blockade on myeloid inflammation in human cancer
Bar N, Costa F, Das R, Duffy A, Samur M, McCachren S, Gettinger S, Neparidze N, Parker TL, Bailur JK, Pendleton K, Bajpai R, Zhang L, Xu ML, Anderson T, Giuliani N, Nooka A, Cho HJ, Raval A, Shanmugam M, Dhodapkar KM, Dhodapkar M. Differential effects of PD-L1 versus PD-1 blockade on myeloid inflammation in human cancer. JCI Insight 2020, 5 PMID: 32427579, PMCID: PMC7406262, DOI: 10.1172/jci.insight.129353.Peer-Reviewed Original ResearchConceptsPD-L1 blockadePD-1 blockadeAsymptomatic multiple myelomaMonocyte-derived DCsPD-L1Immunologic effectsT cellsMyeloid cellsAntigen-specific T cell expansionAnti-PD-1 therapyMyeloid antigen-presenting cellsDistinct inflammatory signatureSystemic immunologic effectsLung cancer patientsT cell expansionAntigen-presenting cellsMyeloid activationMyeloid inflammationInflammatory signatureNIH/NCICheckpoint blockadeDC maturationL1 therapyCombination therapyInflammatory phenotypeImmune Checkpoint Inhibitors in Thoracic Malignancies: Review of the Existing Evidence by an IASLC Expert Panel and Recommendations
Remon J, Passiglia F, Ahn MJ, Barlesi F, Forde PM, Garon EB, Gettinger S, Goldberg SB, Herbst RS, Horn L, Kubota K, Lu S, Mezquita L, Paz-Ares L, Popat S, Schalper KA, Skoulidis F, Reck M, Adjei AA, Scagliotti GV. Immune Checkpoint Inhibitors in Thoracic Malignancies: Review of the Existing Evidence by an IASLC Expert Panel and Recommendations. Journal Of Thoracic Oncology 2020, 15: 914-947. PMID: 32179179, DOI: 10.1016/j.jtho.2020.03.006.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsThoracic malignanciesCheckpoint inhibitorsThymic carcinomaDeath ligand 1 (PD-L1) immune checkpoint inhibitorsAnti-programmed cell death protein 1Cell death protein 1/T-lymphocyte antigen 4 antibodyCombination of ICIsDeath protein 1/Long-term survival benefitHost antitumor immune responseCell death protein 1Immune evasion processStage III NSCLCAntitumor immune responseEarly-stage diseaseDeath protein 1Portion of patientsMalignant pleural mesotheliomaOptimal treatment durationFuture treatment strategiesDefinitive clinical benefitFuture therapeutic developmentAvailable scientific evidence
2019
NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 1.2020.
Ettinger DS, Wood DE, Aggarwal C, Aisner DL, Akerley W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac LR, D'Amico TA, Dilling TJ, Dobelbower M, Gettinger S, Govindan R, Gubens MA, Hennon M, Horn L, Lackner RP, Lanuti M, Leal TA, Lin J, Loo BW, Martins RG, Otterson GA, Patel SP, Reckamp KL, Riely GJ, Schild SE, Shapiro TA, Stevenson J, Swanson SJ, Tauer KW, Yang SC, Gregory K, Hughes M. NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 1.2020. Journal Of The National Comprehensive Cancer Network 2019, 17: 1464-1472. PMID: 31805526, DOI: 10.6004/jnccn.2019.0059.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic AgentsCarcinoma, Non-Small-Cell LungHumansImmunotherapyLung NeoplasmsPractice Guidelines as TopicIncidence of pancreatitis with the use of immune checkpoint inhibitors (ICI) in advanced cancers: A systematic review and meta-analysis
George J, Bajaj D, Sankaramangalam K, Yoo JW, Joshi NS, Gettinger S, Price C, Farrell JJ. Incidence of pancreatitis with the use of immune checkpoint inhibitors (ICI) in advanced cancers: A systematic review and meta-analysis. Pancreatology 2019, 19: 587-594. PMID: 31076344, DOI: 10.1016/j.pan.2019.04.015.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsIncidence of pancreatitisImmune side effectsPD-1 inhibitorsLipase elevationCheckpoint inhibitorsClinical trialsSide effectsSystematic reviewCTLA-4 agentsGrade 2 pancreatitisCTLA-4 inhibitorsLong-term complicationsNon-melanoma cancersICI combinationsICI useTerm complicationsAdvanced cancerTrue incidenceCTLA-4Appropriate treatmentPancreatitisSolid tumorsTumor typesPatientsImmune Checkpoint Inhibitor–Associated Pericarditis
Altan M, Toki MI, Gettinger SN, Carvajal-Hausdorf DE, Zugazagoitia J, Sinard JH, Herbst RS, Rimm DL. Immune Checkpoint Inhibitor–Associated Pericarditis. Journal Of Thoracic Oncology 2019, 14: 1102-1108. PMID: 30851443, PMCID: PMC6617516, DOI: 10.1016/j.jtho.2019.02.026.Peer-Reviewed Original ResearchMeSH KeywordsAgedAntineoplastic Agents, ImmunologicalFemaleHumansImmunotherapyMaleMiddle AgedPericarditisConceptsAdverse eventsCTLA-4 inhibitorsImmune checkpoint inhibitorsDeath-1/Pericardial window procedureCheckpoint inhibitorsThird patientClinical presentationCardiac toxicityHistopathologic findingsSide effectsPericarditisPatientsDeath ligandsPotential mechanismsWindow procedureInhibitorsImmunotherapyNSCLCCardiotoxicityAutopsiesTherapy
2018
Cryotherapy for nodal metastasis in NSCLC with acquired resistance to immunotherapy
Adam LC, Raja J, Ludwig JM, Adeniran A, Gettinger SN, Kim HS. Cryotherapy for nodal metastasis in NSCLC with acquired resistance to immunotherapy. Journal For ImmunoTherapy Of Cancer 2018, 6: 147. PMID: 30541627, PMCID: PMC6292083, DOI: 10.1186/s40425-018-0468-x.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerCell lung cancerMetastatic diseaseNodal metastasisLung cancerMetastatic non-small cell lung cancerDurable complete responseLymph nodal metastasisMalignant pericardial effusionCervical lymph nodesPD-L1 expressionSquamous cell cancerImmune checkpoint immunotherapyLong-term effectivenessCombination immunotherapyCheckpoint inhibitorsPericardial effusionCheckpoint immunotherapyComplete responseLymph nodesCell cancerFemale smokersLung lesionsResistant metastasesConventional chemotherapyOncolytic virus immunotherapy: future prospects for oncology
Raja J, Ludwig JM, Gettinger SN, Schalper KA, Kim HS. Oncolytic virus immunotherapy: future prospects for oncology. Journal For ImmunoTherapy Of Cancer 2018, 6: 140. PMID: 30514385, PMCID: PMC6280382, DOI: 10.1186/s40425-018-0458-z.Peer-Reviewed Original ResearchConceptsOncolytic virusesSevere immune-related adverse eventsImmune-related adverse eventsAnti-tumor immune responseEarly-stage clinical trialsImmune checkpoint inhibitorsSerious adverse effectsOncolytic viral therapyLimited therapeutic responseAnti-cancer treatmentLocal target cellsCheckpoint inhibitorsSalvage therapyTolerability profileCytotoxic chemotherapyAdverse eventsImmune dysregulationOncologic careTherapeutic optionsTumor bedSuch therapyTherapeutic responseClinical trialsNovel therapiesViral therapyFIR: Efficacy, Safety, and Biomarker Analysis of a Phase II Open-Label Study of Atezolizumab in PD-L1–Selected Patients With NSCLC
Spigel DR, Chaft JE, Gettinger S, Chao BH, Dirix L, Schmid P, Chow LQM, Hicks RJ, Leon L, Fredrickson J, Kowanetz M, Sandler A, Funke R, Rizvi NA. FIR: Efficacy, Safety, and Biomarker Analysis of a Phase II Open-Label Study of Atezolizumab in PD-L1–Selected Patients With NSCLC. Journal Of Thoracic Oncology 2018, 13: 1733-1742. PMID: 29775807, PMCID: PMC7455890, DOI: 10.1016/j.jtho.2018.05.004.Peer-Reviewed Original ResearchConceptsTreatment-related adverse eventsObjective response ratePD-L1 expressionAdverse eventsCohort 1Immune cell PD-L1 expressionInvestigator-assessed objective response ratePhase II open-label studyResponse rateIC PD-L1 expressionTumor cellsBaseline tumor samplesOpen-label studyPhase II studyProgression-free survivalResponse Evaluation CriteriaDuration of responseAtezolizumab monotherapyAdvanced NSCLCBrain metastasesMonotherapy studiesPrimary endpointSecondary endpointsII studyOverall survivalEarly Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA
Goldberg SB, Narayan A, Kole AJ, Decker RH, Teysir J, Carriero NJ, Lee A, Nemati R, Nath SK, Mane SM, Deng Y, Sukumar N, Zelterman D, Boffa DJ, Politi K, Gettinger S, Wilson LD, Herbst RS, Patel AA. Early Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA. Clinical Cancer Research 2018, 24: 1872-1880. PMID: 29330207, PMCID: PMC5899677, DOI: 10.1158/1078-0432.ccr-17-1341.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerImmune checkpoint inhibitorsCtDNA responseCheckpoint inhibitorsCtDNA levelsMetastatic non-small cell lung cancerImmune checkpoint inhibitor therapySuperior progression-free survivalRadiographic tumor sizeCheckpoint inhibitor therapyProgression-free survivalSuperior overall survivalTumor DNA levelsCell lung cancerAllele fractionClin Cancer ResMultigene next-generation sequencingMutant allele fractionTumor cell deathInhibitor therapyOverall survivalRadiographic responseImmunotherapy efficacyImmunotherapy responseMedian timeClinical Features and Management of Acquired Resistance to PD-1 Axis Inhibitors in 26 Patients With Advanced Non–Small Cell Lung Cancer
Gettinger SN, Wurtz A, Goldberg SB, Rimm D, Schalper K, Kaech S, Kavathas P, Chiang A, Lilenbaum R, Zelterman D, Politi K, Herbst R. Clinical Features and Management of Acquired Resistance to PD-1 Axis Inhibitors in 26 Patients With Advanced Non–Small Cell Lung Cancer. Journal Of Thoracic Oncology 2018, 13: 831-839. PMID: 29578107, PMCID: PMC6485248, DOI: 10.1016/j.jtho.2018.03.008.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overCarcinoma, Non-Small-Cell LungFemaleHumansImmunotherapyLung NeoplasmsMaleMiddle AgedConceptsPD-1 axis inhibitorsNon-small cell lung cancerAdvanced non-small cell lung cancerCell lung cancerInhibitor therapyLocal therapyLymph nodesLung cancerSurvival rateSolid Tumors v1.1Response Evaluation CriteriaSite of diseaseProgression of diseaseProgressive diseaseClinical patternLN metastasisSuch patientsClinical featuresMedian timeRadiographic featuresTumor regressionProlonged benefitPatientsTherapyResponse criteria
2016
Clinical and Histologic Features of Lichenoid Mucocutaneous Eruptions Due to Anti–Programmed Cell Death 1 and Anti–Programmed Cell Death Ligand 1 Immunotherapy
Shi VJ, Rodic N, Gettinger S, Leventhal JS, Neckman JP, Girardi M, Bosenberg M, Choi JN. Clinical and Histologic Features of Lichenoid Mucocutaneous Eruptions Due to Anti–Programmed Cell Death 1 and Anti–Programmed Cell Death Ligand 1 Immunotherapy. JAMA Dermatology 2016, 152: 1128-1136. PMID: 27411054, PMCID: PMC6108080, DOI: 10.1001/jamadermatol.2016.2226.Peer-Reviewed Original ResearchConceptsAnti-PD-1/PD-L1 therapyCutaneous adverse effectsPD-L1 therapyCell death 1Concurrent medicationsDeath-1Adverse effectsClinical morphologyAnti-PD-1/PD-L1 treatmentAnti-programmed cell death ligand-1 (PD-L1) immunotherapiesAnti-programmed cell death 1Non-small cell lung cancerDeath ligand 1 (PD-L1) immunotherapyPD-L1 antibody therapyCell death ligand 1Yale-New Haven HospitalMucocutaneous adverse effectsPD-L1 treatmentTreatment of rashTertiary care hospitalDeath ligand 1Lichenoid drug eruptionCell lung cancerSkin biopsy specimensRecent US FoodPossible Interaction of Anti–PD-1 Therapy with the Effects of Radiosurgery on Brain Metastases
Alomari AK, Cohen J, Vortmeyer AO, Chiang A, Gettinger S, Goldberg S, Kluger HM, Chiang VL. Possible Interaction of Anti–PD-1 Therapy with the Effects of Radiosurgery on Brain Metastases. Cancer Immunology Research 2016, 4: 481-487. PMID: 26994250, DOI: 10.1158/2326-6066.cir-15-0238.Peer-Reviewed Original ResearchConceptsStereotactic radiosurgeryBrain metastasesInitiation of immunotherapyPD-1 mAbImmune-modulating therapyModalities of treatmentRadiologic progressionSurgical resectionSystemic therapyDeath-1Radiologic findingsMetastatic malignancyReactive astrocytosisPathologic examinationTreatment regimensHistopathologic examinationWall infiltrationT lymphocytesPatientsTumor progressionMonoclonal antibodiesBiologic interactionsRadiation-induced changesImmunotherapyMalignancy
2015
Immune Checkpoint Modulation for Non–Small Cell Lung Cancer
Soria JC, Marabelle A, Brahmer JR, Gettinger S. Immune Checkpoint Modulation for Non–Small Cell Lung Cancer. Clinical Cancer Research 2015, 21: 2256-2262. PMID: 25979932, DOI: 10.1158/1078-0432.ccr-14-2959.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerAdvanced non-small cell lung cancerCell lung cancerImmune checkpointsL1 antibodyLung cancerClinical trialsT cellsImmune-related progression-free survivalCytotoxic T-lymphocyte-associated protein 4Response rateT-lymphocyte-associated protein 4Tumor PD-L1 expressionRandomized phase II trialImmune checkpoint modulationObjective response ratePD-L1 expressionPhase II trialProgression-free survivalDeath ligand 1Immunosuppressive T cellsAdditional clinical trialsLung cancer patientsLow toxicity profileNSCLC histology