2021
Reprogramming of bivalent chromatin states in NRAS mutant melanoma suggests PRC2 inhibition as a therapeutic strategy
Terranova C, Tang M, Maitituoheti M, Raman A, Ghosh A, Schulz J, Amin S, Orouji E, Tomczak K, Sarkar S, Oba J, Creasy C, Wu C, Khan S, Lazcano R, Wani K, Singh A, Barrodia P, Zhao D, Chen K, Haydu L, Wang W, Lazar A, Woodman S, Bernatchez C, Rai K. Reprogramming of bivalent chromatin states in NRAS mutant melanoma suggests PRC2 inhibition as a therapeutic strategy. Cell Reports 2021, 36: 109410. PMID: 34289358, PMCID: PMC8369408, DOI: 10.1016/j.celrep.2021.109410.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorCell ProliferationChromatinEnhancer of Zeste Homolog 2 ProteinFemaleGTP PhosphohydrolasesHistonesHumansMelanocytesMelanomaMembrane ProteinsMesodermMice, NudeMitogen-Activated Protein Kinase KinasesMutationNeoplasm MetastasisPolycomb Repressive Complex 2Transcription, GeneticTumor BurdenConceptsHistone H3 lysine 27 trimethylationH3 lysine 27 trimethylationBivalent chromatin stateCell identity genesLysine 27 trimethylationKey epigenetic alterationsNRAS mutantsMaster transcription factorBivalent domainsChromatin statePRC2 inhibitionEpigenetic elementsTranscription factorsEpigenetic alterationsGenetic driversMesenchymal phenotypeNRAS-mutant melanomaState profilingTherapeutic vulnerabilitiesInvasive capacityPharmacological inhibitionMutantsTherapeutic strategiesMelanoma samplesMutant melanoma patients
2020
Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure
Akdemir K, Le V, Kim J, Killcoyne S, King D, Lin Y, Tian Y, Inoue A, Amin S, Robinson F, Nimmakayalu M, Herrera R, Lynn E, Chan K, Seth S, Klimczak L, Gerstung M, Gordenin D, O’Brien J, Li L, Deribe Y, Verhaak R, Campbell P, Fitzgerald R, Morrison A, Dixon J, Andrew Futreal P. Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure. Nature Genetics 2020, 52: 1178-1188. PMID: 33020667, PMCID: PMC8350746, DOI: 10.1038/s41588-020-0708-0.Peer-Reviewed Original ResearchConceptsCancer genomesMutational processesGenome organizationThree-dimensional genome organizationThree-dimensional chromatin structureSomatic mutationsSpatial genome organizationMutation rate variationDifferent human cancer typesDifferent mutational processesWhole-genome datasetsActive mutational processesSpecific mutational processesChromatin structureHuman cancer typesMutation distributionInactive domainsDevelopment of cancerDriver genesGenomeMutational loadActive domainHuman cancersMutationsNovel therapeutic strategiesEnhancer Reprogramming Confers Dependence on Glycolysis and IGF Signaling in KMT2D Mutant Melanoma
Maitituoheti M, Keung E, Tang M, Yan L, Alam H, Han G, Singh A, Raman A, Terranova C, Sarkar S, Orouji E, Amin S, Sharma S, Williams M, Samant N, Dhamdhere M, Zheng N, Shah T, Shah A, Axelrad J, Anvar N, Lin Y, Jiang S, Chang E, Ingram D, Wang W, Lazar A, Lee M, Muller F, Wang L, Ying H, Rai K. Enhancer Reprogramming Confers Dependence on Glycolysis and IGF Signaling in KMT2D Mutant Melanoma. Cell Reports 2020, 33: 108293. PMID: 33086062, PMCID: PMC7649750, DOI: 10.1016/j.celrep.2020.108293.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarrier ProteinsCell Line, TumorDNA-Binding ProteinsFemaleGenes, Tumor SuppressorGlucoseGlycolysisHistone MethyltransferasesHistone-Lysine N-MethyltransferaseHumansInsulinIntercellular Signaling Peptides and ProteinsMaleMelanomaMiceMice, Inbred C57BLMice, NudeMyeloid-Lymphoid Leukemia ProteinNeoplasm ProteinsReceptor, IGF Type 1Regulatory Sequences, Nucleic AcidSignal TransductionXenograft Model Antitumor AssaysConceptsKMT2D-deficient cellsInsulin growth factorEnhancer reprogrammingIGF1R-AktMelanocyte-specific deletionMutant melanomaMouse modelTumor typesTherapeutic interventionsPharmacological inhibitionPathway inhibitorPotent tumor suppressorIGF signalingGrowth factorMelanomaPooled RNAi screensSomatic point mutationsTumor suppressorKey metabolic pathwaysFrequent lossGlycolysisGlycolysis enzymesTumorigenesisGlycolysis pathwayMetabolic pathwaysExtrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers
Kim H, Nguyen N, Turner K, Wu S, Gujar A, Luebeck J, Liu J, Deshpande V, Rajkumar U, Namburi S, Amin S, Yi E, Menghi F, Schulte J, Henssen A, Chang H, Beck C, Mischel P, Bafna V, Verhaak R. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nature Genetics 2020, 52: 891-897. PMID: 32807987, PMCID: PMC7484012, DOI: 10.1038/s41588-020-0678-2.Peer-Reviewed Original ResearchConceptsOncogene amplificationPoor outcomeCancer typesEcDNA amplificationShorter survivalCancer patientsMost cancer typesExtrachromosomal DNA amplificationsClinical impactMultiple cancersPatientsNormal tissuesCancerTranscript fusionsEnhanced chromatin accessibilityIntratumoral genetic heterogeneityOncogene transcriptionChromosomal amplificationOutcomesGenetic heterogeneityHigh levelsDNA amplificationTissue typesBlood
2019
p53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors
Carugo A, Minelli R, Sapio L, Soeung M, Carbone F, Robinson F, Tepper J, Chen Z, Lovisa S, Svelto M, Amin S, Srinivasan S, Del Poggetto E, Loponte S, Puca F, Dey P, Malouf G, Su X, Li L, Lopez-Terrada D, Rakheja D, Lazar A, Netto G, Rao P, Sgambato A, Maitra A, Tripathi D, Walker C, Karam J, Heffernan T, Viale A, Roberts C, Msaouel P, Tannir N, Draetta G, Genovese G. p53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors. Cancer Cell 2019, 35: 204-220.e9. PMID: 30753823, PMCID: PMC7876656, DOI: 10.1016/j.ccell.2019.01.006.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsAutophagyCell Line, TumorCyclin-Dependent Kinase Inhibitor p16Endoplasmic Reticulum StressFemaleGene Expression Regulation, NeoplasticHumansMaleMice, 129 StrainMice, Inbred C57BLMice, KnockoutProteasome InhibitorsProteostasisProto-Oncogene Proteins c-mycRhabdoid TumorSignal TransductionSMARCB1 ProteinTumor Cells, CulturedTumor Suppressor Protein p53Unfolded Protein ResponseConceptsMalignant rhabdoid tumorRhabdoid tumorUnfolded protein responseClinical pathological featuresAggressive pediatric malignancyCombination of agentsPediatric malignanciesMouse modelP53 axisMosaic mouse modelChromatin remodeling genesER stress responseTumorsHuman oncogenesisBiallelic inactivationMalignancyProtein responseDramatic activationHuman diseasesMaster regulatorExquisite sensitivityAutophagic machineryAgentsDiseaseStress response
2018
An in vivo screen identifies PYGO2 as a driver for metastatic prostate cancer
Lu X, Pan X, Wu C, Zhao D, Feng S, Zang Y, Lee R, Khadka S, Amin S, Jin E, Shang X, Deng P, Luo Y, Morgenlander W, Weinrich J, Lu X, Jiang S, Chang Q, Navone N, Troncoso P, DePinho R, Wang Y. An in vivo screen identifies PYGO2 as a driver for metastatic prostate cancer. Cancer Research 2018, 78: canres.3564.2017. PMID: 29769196, PMCID: PMC6381393, DOI: 10.1158/0008-5472.can-17-3564.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkers, TumorCarcinogenesisCell Line, TumorDisease ProgressionGene Expression Regulation, NeoplasticHEK293 CellsHumansIntracellular Signaling Peptides and ProteinsLymph NodesMaleMiceMice, NudeNeoplasm GradingOncogenesPC-3 CellsProstatic NeoplasmsTranscriptional ActivationUp-RegulationWnt Signaling PathwayConceptsProstate cancer progressionDepth functional analysisCancer progressionWnt/β-catenin signalingCancer cell invasionΒ-catenin signalingFunctional genomicsProstate cancerTranscriptional activationCopy number aberrationsTranscriptomic datasetsFinger 2New oncogenePygo2's functionFunctional driversFunctional analysisLymph nodesImpairs tumor progressionChromosomal instabilityPutative oncogeneCell invasionNumber aberrationsPositive hitsAmplification/overexpressionOncogene
2017
Navigating the Cancer Transcriptome by Decoding Divergent Oncogenic States
Amin S, Verhaak R. Navigating the Cancer Transcriptome by Decoding Divergent Oncogenic States. Cell Systems 2017, 5: 90-92. PMID: 28837814, DOI: 10.1016/j.cels.2017.08.006.Peer-Reviewed Original ResearchConceptsAvailable therapeutic options
2016
miR-182-5p Induced by STAT3 Activation Promotes Glioma Tumorigenesis
Xue J, Zhou A, Wu Y, Morris S, Lin K, Amin S, Verhaak R, Fuller G, Xie K, Heimberger A, Huang S. miR-182-5p Induced by STAT3 Activation Promotes Glioma Tumorigenesis. Cancer Research 2016, 76: 4293-4304. PMID: 27246830, PMCID: PMC5033679, DOI: 10.1158/0008-5472.can-15-3073.Peer-Reviewed Original ResearchConceptsProtocadherin-8Glioma tumorigenesisProtein-coding genesMiRNA gene transcriptionCandidate target genesExpression of STAT3Gene transcriptionBioinformatics analysisTarget genesSTAT3/miRSTAT3 knockdownPCDH8 expressionSTAT3 inhibitorAberrant activationGlioblastoma tissuesSTAT3Expression levelsInvasive capacityTranscriptionTumorigenesisGlioma progressionGenesCritical roleKnockdownP-STAT3
2012
Investigational agent MLN9708/2238 targets tumor-suppressor miR33b in MM cells
Tian Z, Zhao J, Tai Y, Amin S, Hu Y, Berger A, Richardson P, Chauhan D, Anderson K. Investigational agent MLN9708/2238 targets tumor-suppressor miR33b in MM cells. Blood 2012, 120: 3958-3967. PMID: 22983447, PMCID: PMC3496955, DOI: 10.1182/blood-2012-01-401794.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBoron CompoundsCell DeathCell Line, TumorCell MovementCell SurvivalCluster AnalysisDrug Resistance, NeoplasmGene Expression ProfilingGene Expression Regulation, NeoplasticGenes, Tumor SuppressorGlycineHumansImidazolesMiceMicroRNAsMultiple MyelomaProto-Oncogene Proteins c-pim-1PyridazinesSignal TransductionXenograft Model Antitumor AssaysConceptsMultiple myelomaMM cellsPim-1Tumor suppressor geneTranscriptional regulationPim-1 overexpressionBiochemical inhibitorsApoptotic signalingRole of miRTumor suppressorMiR33bMM cell viabilityCell deathPatient MM cellsMM xenograft modelNovel therapeutic strategiesLuciferase activityColony formationOverexpressionMiR profilingTumor pathogenesisInvestigational agentsCritical roleRegulationCell viability