2021
A Network Meta-Analysis of Cancer Immunotherapies Versus Chemotherapy for First-Line Treatment of Patients With Non-Small Cell Lung Cancer and High Programmed Death-Ligand 1 Expression
Herbst R, Jassem J, Abogunrin S, James D, McCool R, Belleli R, Giaccone G, De Marinis F. A Network Meta-Analysis of Cancer Immunotherapies Versus Chemotherapy for First-Line Treatment of Patients With Non-Small Cell Lung Cancer and High Programmed Death-Ligand 1 Expression. Frontiers In Oncology 2021, 11: 676732. PMID: 34307144, PMCID: PMC8300186, DOI: 10.3389/fonc.2021.676732.Peer-Reviewed Original ResearchNon-small cell lung cancerProgression-free survivalObjective response rateStage IV non-small cell lung cancerFirst-line treatmentOverall survivalCell lung cancerLung cancerHigh Programmed-Death Ligand 1 (PD-L1) expressionMetastatic non-small cell lung cancerStage non-small cell lung cancerProgrammed Death Ligand 1 ExpressionTreatment-related adverse eventsDeath ligand 1 (PD-L1) expressionPD-L1 expressionPD-L1 statusAbsence of headNetwork Meta-AnalysisRisk of biasRandom-effects modelVersus ChemotherapyImmunotherapy regimenAdverse eventsHead trialsCombination regimens
2011
Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor–resistant human lung adenocarcinoma
Cascone T, Herynk MH, Xu L, Du Z, Kadara H, Nilsson MB, Oborn CJ, Park YY, Erez B, Jacoby JJ, Lee JS, Lin HY, Ciardiello F, Herbst RS, Langley RR, Heymach JV. Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor–resistant human lung adenocarcinoma. Journal Of Clinical Investigation 2011, 121: 1313-1328. PMID: 21436589, PMCID: PMC3070607, DOI: 10.1172/jci42405.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAngiogenesis InhibitorsAnimalsAntibodies, MonoclonalAntibodies, Monoclonal, HumanizedApoptosisBevacizumabCell Line, TumorDrug Resistance, NeoplasmErbB ReceptorsGene Expression ProfilingHumansLung NeoplasmsMaleMiceMice, NudeNeovascularization, PathologicRNA, MessengerRNA, NeoplasmStromal CellsUp-RegulationVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-2Xenograft Model Antitumor AssaysConceptsMouse xenograft modelHuman lung adenocarcinomaTumor cellsPrimary resistanceLung adenocarcinomaXenograft modelFGFR pathwayProgression-free survivalVEGF inhibitor bevacizumabEndothelium of tumorsInhibitors of angiogenesisCombination regimensTreatment of cancerVEGF inhibitorsPericyte coverageAntiangiogenic therapyVascular remodelingAngiogenesis inhibitorsTherapeutic efficacyTumor growthStromal pathwaysClinical useEGFRAcquired ResistanceEGFR pathway
1998
Acute in vivo resistance in high-dose therapy.
Teicher BA, Ara G, Keyes SR, Herbst RS, Frei E. Acute in vivo resistance in high-dose therapy. Clinical Cancer Research 1998, 4: 483-91. PMID: 9516940.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsAntineoplastic Combined Chemotherapy ProtocolsCarboplatinCyclophosphamideDisease Models, AnimalDose-Response Relationship, DrugDrug Resistance, MultipleDrug Resistance, NeoplasmFemaleMammary Neoplasms, ExperimentalMelphalanMiceMice, Inbred BALB CNeoplasm TransplantationPaclitaxelThiotepaConceptsTumor growth delayAdditive tumor growth delayHigh-dose cyclophosphamideHigh-dose melphalanGrowth delaySecond highest doseHigh doseSequential high-dose chemotherapyTumor cell survival assayEMT-6 mammary carcinomaTumor growth delay studiesBone marrow colony-forming unitsHigh-dose therapyMarrow colony-forming unitsHigh-dose chemotherapyBone marrow CFU-GMHigh-dose treatmentGrowth delay studiesTumor-bearing miceMarrow CFU-GMSolid tumor modelsCell survival assayCombination regimensMammary carcinomaCyclophosphamide