2023
Rps19 and Rpl5 Play Distinct Roles in hematopoietic Stem Cell maintenance and Erythroid Differentiation
Tang Y, Ling T, Khan M, Rao R, Schulz V, Papoin J, Narla A, Lipton J, Palis J, Steiner L, Gallagher P, Narla M, Crispino J, Blanc L. Rps19 and Rpl5 Play Distinct Roles in hematopoietic Stem Cell maintenance and Erythroid Differentiation. Blood 2023, 142: 144. DOI: 10.1182/blood-2023-189146.Peer-Reviewed Original ResearchFailure of erythropoiesisErythroid differentiationVav-iCreHematopoietic stem cell maintenanceFetal hematopoiesisHematopoietic stemProtein translation ratesStem cell maintenanceRibosomal protein haploinsufficiencyGlobal protein synthesisTerminal erythroid differentiationCell compartmentExpression of RUNX1Stem cell compartmentErythroid fateProgenitor cell compartmentFetal liverRibosome biogenesisPolysome profilingNormal expression levelsRibosomal proteinsProgenitor biologyCell maintenanceScRNAseq studiesTranscription factors
2019
Identification and transcriptome analysis of erythroblastic island macrophages
Li W, Wang Y, Zhao H, Zhang H, Xu Y, Wang S, Guo X, Huang Y, Zhang S, Han Y, Wu X, Rice CM, Huang G, Gallagher PG, Mendelson A, Yazdanbakhsh K, Liu J, Chen L, An X. Identification and transcriptome analysis of erythroblastic island macrophages. Blood 2019, 134: 480-491. PMID: 31101625, PMCID: PMC6676133, DOI: 10.1182/blood.2019000430.Peer-Reviewed Original ResearchConceptsErythroblastic islandsEBI macrophagesErythroid cellsErythroblastic island macrophagesGene expression profilesTranscriptome analysisNonerythroid cellsMacrophage functionHematopoietic nicheExpression profilesSpecialized functionsCentral macrophageKnockin mouse modelFlow cytometry analysisEpoRKey moleculesIron recyclingBone marrowCytometry analysisFetal liverNicheEfficient erythropoiesisErythropoiesisIron sourceImportant resource
2009
Genome-Wide ChIP-Seq Reveals a Dramatic Shift in the EKLF Binding Profile Between Erythroid Progenitors and Erythroblasts.
Pilon A, Ajay S, Abaan H, Margulies E, Gallagher P, Bodine D. Genome-Wide ChIP-Seq Reveals a Dramatic Shift in the EKLF Binding Profile Between Erythroid Progenitors and Erythroblasts. Blood 2009, 114: 565. DOI: 10.1182/blood.v114.22.565.565.Peer-Reviewed Original ResearchTarget genesChIP-seqNearest geneSimultaneous genome-wide analysisC2H2 zinc finger transcription factorGenome-wide ChIP-seqErythroid Kruppel-like factorZinc finger transcription factorErythroid progenitorsTranscription factor occupancyBeta-globin locusGenome-wide analysisCell cycle control factorsProtein-DNA interactionsFinger transcription factorChIP-seq dataS-phase entryNon-repetitive regionsKruppel-like factorEKLF geneEKLF proteinFetal liverCell cycle S-phase entryChromatin remodelingFactor occupancy
2005
The Human Alpha Hemoglobin Stabilizing Protein (AHSP) Gene Locus in EKLF-Deficient Erythroid Cells.
Pilon A, Zhou D, Weiss M, Townes T, Bodine D, Gallagher P. The Human Alpha Hemoglobin Stabilizing Protein (AHSP) Gene Locus in EKLF-Deficient Erythroid Cells. Blood 2005, 106: 1740. DOI: 10.1182/blood.v106.11.1740.1740.Peer-Reviewed Original ResearchCACCC siteErythroid cellsWild typeModifier genesDNase I hypersensitive site mappingLocal chromatin structureΒ-globin transcriptionErythroid-specific proteinΒ-globin gene promoterDNA-protein complexesFetal liver cellsTranscription factor EKLFChromatin immunoprecipitation analysisΒ-globin sequencesHypersensitive site mappingFetal liverMobility shift assaysPromoter-luciferase reporter plasmidProximal CACCC boxFetal liver DNACore promoter regionAHSP promoterDeficient fetal liver cellsEKLF geneChromatin modulatorsA Differentiation Block in Erythroid Cells Lacking Erythroid Krupple-Like Factor (EKLF).
Gallagher P, Arcasoy M, Vayda S, Dressman H, Bieker J, Bodine D. A Differentiation Block in Erythroid Cells Lacking Erythroid Krupple-Like Factor (EKLF). Blood 2005, 106: 526. DOI: 10.1182/blood.v106.11.526.526.Peer-Reviewed Original ResearchWild typeErythroid differentiationMicroarray analysisDifferentiation blockErythroid cellsFocus genesMouse Genome 430 2.0 ArrayAffymetrix GeneChip Mouse Genome 430 2.0 ArrayFetal liver cellsCell cycle defectsTerminal erythroid differentiationCell cycle controlFetal liverIngenuity Pathway AnalysisR2 cellsMature erythroid cellsΒ-globin geneErythroid progenitor cellsErythroid genesNumerous genesDefinitive erythropoiesisDNA replicationTranscription factorsΒ-spectrinBiological functions
1998
Substitution of the Human β-Spectrin Promoter for the Human Aγ-Globin Promoter Prevents Silencing of a Linked Human β-Globin Gene in Transgenic Mice
Sabatino D, Cline A, Gallagher P, Garrett L, Stamatoyannopoulos G, Forget B, Bodine D. Substitution of the Human β-Spectrin Promoter for the Human Aγ-Globin Promoter Prevents Silencing of a Linked Human β-Globin Gene in Transgenic Mice. Molecular And Cellular Biology 1998, 18: 6634-6640. PMID: 9774678, PMCID: PMC109248, DOI: 10.1128/mcb.18.11.6634.Peer-Reviewed Original Research