2001
Independent parcellation of the embryonic visual cortex and thalamus revealed by combinatorial Eph/ephrin gene expression
Šestan N, Rakic P, Donoghue M. Independent parcellation of the embryonic visual cortex and thalamus revealed by combinatorial Eph/ephrin gene expression. Current Biology 2001, 11: 39-43. PMID: 11166178, DOI: 10.1016/s0960-9822(00)00043-9.Peer-Reviewed Original ResearchConceptsVisual cortical areasVisual cortexCortical plateCortical areasReciprocal connectionsDistinct visual cortical areasLateral geniculate nucleusEphA family membersPulvinar projectionsHigher association areasCytoarchitectonic differentiationThalamic nucleiGeniculate nucleusThalamusAssociation areasThalamocortical systemRhesus monkeysExtrastriate cortexCortexReceptor tyrosine kinasesEph receptor tyrosine kinasesMolecular patternsFamily membersTyrosine kinaseStriate
1999
Molecular Evidence for the Early Specification of Presumptive Functional Domains in the Embryonic Primate Cerebral Cortex
Donoghue M, Rakic P. Molecular Evidence for the Early Specification of Presumptive Functional Domains in the Embryonic Primate Cerebral Cortex. Journal Of Neuroscience 1999, 19: 5967-5979. PMID: 10407035, PMCID: PMC6783094, DOI: 10.1523/jneurosci.19-14-05967.1999.Peer-Reviewed Original ResearchConceptsCortical platePresumptive visual cortexPrimate cerebral cortexLigand ephrin-A5Appropriate synaptic connectionsCortical cellsThalamocortical connectionsCerebral cortexMonkey neocortexCortical developmentPrimate neocortexVisual cortexSynaptic connectionsEphrin-A3Ephrin-A2Extrastriate cortexEarly gene expressionEmbryonic neocortexEphrin-A5Molecular patternsNeocortexCortexEphA6Primate corticogenesisPosterior region
1997
Radiation‐induced, lamina‐specific deletion of neurons in the primate visual cortex
Algan O, Rakic P. Radiation‐induced, lamina‐specific deletion of neurons in the primate visual cortex. The Journal Of Comparative Neurology 1997, 381: 335-352. PMID: 9133572, DOI: 10.1002/(sici)1096-9861(19970512)381:3<335::aid-cne6>3.0.co;2-3.Peer-Reviewed Original ResearchConceptsLateral geniculate nucleusArea 17Primate visual cortexVisual cortexLow dosesCortical layersArea 17/18 borderEmbryonic day 80Period of corticogenesisSuperficial cortical layersOnset of corticogenesisComputer-aided morphometryMacaque monkey brainSpecific cell classesMultiple dosesCortical cytoarchitectureGeniculate nucleusCortical developmentLaminar positionSpecific neuronal classesCortical thicknessPrimate brainMonkey brainCytoarchitectonic featuresHigh doses
1996
Selective expression of m2 muscarinic receptor in the parvocellular channel of the primate visual cortex.
Mrzljak L, Levey A, Rakic P. Selective expression of m2 muscarinic receptor in the parvocellular channel of the primate visual cortex. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 7337-7340. PMID: 8692994, PMCID: PMC38985, DOI: 10.1073/pnas.93.14.7337.Peer-Reviewed Original ResearchConceptsDorsal lateral geniculate nucleusLateral geniculate nucleusGeniculate nucleusVisual cortexMacaque monkey visual cortexM2 muscarinic acetylcholine receptorM2 muscarinic receptorsM2 receptor proteinMuscarinic acetylcholine receptorsMonkey visual cortexPrimate visual cortexM2 receptorsCerebral cortexMuscarinic receptorsExcitatory neurotransmissionParvocellular layersLayers IIAcetylcholine receptorsSynaptic circuitsNeuronal channelsParvocellular channelsParvocellular pathwayCortexSelective expressionReceptorsNumerical relationship between neurons in the lateral geniculate nucleus and primary visual cortex in macaque monkeys
Suner I, Rakic P. Numerical relationship between neurons in the lateral geniculate nucleus and primary visual cortex in macaque monkeys. Visual Neuroscience 1996, 13: 585-590. PMID: 8782386, DOI: 10.1017/s0952523800008269.Peer-Reviewed Original ResearchConceptsLateral geniculate nucleusArea 17Primary visual cortexGeniculate nucleusVisual cortexThree-dimensional counting methodTotal neuron numberNormal rhesus monkeysVisual centersCerebral hemispheresMacaque monkeysRhesus monkeysNeuron numberNeuronsNumber of neuronsRight sideCortexTotal populationMonkeysMultiple factorsSame side
1995
Neurotransmitter receptors in the proliferative zones of the developing primate occipital lobe
Lidow M, Rakic P. Neurotransmitter receptors in the proliferative zones of the developing primate occipital lobe. The Journal Of Comparative Neurology 1995, 360: 393-402. PMID: 8543647, DOI: 10.1002/cne.903600303.Peer-Reviewed Original ResearchConceptsCortical neuronsOccipital lobeReceptor subtypesSubventricular zoneHigh-affinity kainate receptorsProliferative zoneSubventricular proliferative zonesNeurotransmitter receptor subtypesCell proliferationEmbryonic cerebral wallGamma-aminobutyric acidD1 dopaminergicMonkey fetusesDeep laminaeKainate receptorsNeuronal productionCerebral wallMultiple neurotransmittersCortical neurogenesisNeurotransmitter receptorsVisual cortexFetusesNeuronsAlpha 1Alpha 2Tempo of neurogenesis and synaptogenesis in the primate cingulate mesocortex: Comparison with the neocortex
Granger B, Tekaia F, Le Sourd A, Rakic P, Bourgeois J. Tempo of neurogenesis and synaptogenesis in the primate cingulate mesocortex: Comparison with the neocortex. The Journal Of Comparative Neurology 1995, 360: 363-376. PMID: 8522653, DOI: 10.1002/cne.903600212.Peer-Reviewed Original ResearchConceptsEnd of neurogenesisArea 24Area 17Neocortical areasEmbryonic days (EDs) 70Postnatal rhesus monkeysSecond postnatal monthPrimary visual cortexRemainder of gestationAnterior cingulate cortexSynaptic densityPostnatal monthRapid phaseHumoral factorsCingulate cortexVisual cortexAssociational areasRhesus monkeysNeurogenesisDay 70SynaptogenesisAutoradiographic analysisMonthsMesocortexNeocortexDistribution and density of monoamine receptors in the primate visual cortex devoid of retinal input from early embryonic stages
Rakic P, Lidow. Distribution and density of monoamine receptors in the primate visual cortex devoid of retinal input from early embryonic stages. Journal Of Neuroscience 1995, 15: 2561-2574. PMID: 7891189, PMCID: PMC6578103, DOI: 10.1523/jneurosci.15-03-02561.1995.Peer-Reviewed Original ResearchConceptsMonoamine receptorsVisual cortexLaminar distributionSpecific laminar patternMonths of agePrimate visual cortexGroups of animalsBinocular enucleationCortical consequencesPrestriate areasCerebral cortexMonoaminergic receptorsSupragranular layersCortical plateLayer IVCongenital anophthalmiaGeniculocortical fibersOccipital lobeCortical bindingLaminar patternRetinal inputNeurotransmitter receptorsMonkey striateCoronal planeDistinct laminar
1994
Unique profiles of the alpha 1-, alpha 2-, and beta-adrenergic receptors in the developing cortical plate and transient embryonic zones of the rhesus monkey
Lidow, Rakic P. Unique profiles of the alpha 1-, alpha 2-, and beta-adrenergic receptors in the developing cortical plate and transient embryonic zones of the rhesus monkey. Journal Of Neuroscience 1994, 14: 4064-4078. PMID: 8027763, PMCID: PMC6577033, DOI: 10.1523/jneurosci.14-07-04064.1994.Peer-Reviewed Original ResearchConceptsTransient embryonic zonesBeta-adrenergic receptorsCortical plateAdrenergic receptor subtypesSubplate zoneReceptor subtypesCerebral wallRhesus monkeysAlpha 1Alpha 1 sitesAlpha 2Alpha 2 receptorsAlpha 1 receptorsEmbryonic zonesIntensive proliferative activityReceptor autoradiographyCortical neuronsSubventricular zoneCortical developmentOccipital lobeBeta receptorsAdrenergic receptorsAdrenergic sitesVisual cortexGerminal zone
1993
Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage
Bourgeois J, Rakic P. Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. Journal Of Neuroscience 1993, 13: 2801-2820. PMID: 8331373, PMCID: PMC6576672, DOI: 10.1523/jneurosci.13-07-02801.1993.Peer-Reviewed Original ResearchConceptsPrimary visual cortexSynaptic contactsVisual cortexCortical plateSynaptic densityDendritic spinesPostnatal yearDensity of synapsesThird postnatal monthFirst postnatal yearTime of pubertyMicrons 3Asymmetric synapsesDendritic shaftsLayer VICalcarine fissureCortical neuronsLayer IVPostnatal monthLaminar positionMacaque monkeysFunctional maturationRhesus monkeysAdult levelsNeuropil
1992
Scheduling of Monoaminergic Neurotransmitter Receptor Expression in the Primate Neocortex during Postnatal Development
Lidow M, Rakic P. Scheduling of Monoaminergic Neurotransmitter Receptor Expression in the Primate Neocortex during Postnatal Development. Cerebral Cortex 1992, 2: 401-416. PMID: 1330122, DOI: 10.1093/cercor/2.5.401.Peer-Reviewed Original ResearchConceptsMonoaminergic receptorsCortical layersReceptor densityCytoarchitectonic areasPostnatal developmentNeurotransmitter receptor expressionSuperficial cortical layersMonths of ageTime of pubertyCerebral cortexCortical maturationPostnatal monthReceptor expressionPrimary motorPrimate neocortexVisual cortexRhesus monkeysFourth monthReceptorsMonthsReceptor sitesCortexDevelopmental changesDevelopmental courseTransient overproduction
1991
A novel cytoarchitectonic area induced experimentally within the primate visual cortex.
Rakic P, Suñer I, Williams R. A novel cytoarchitectonic area induced experimentally within the primate visual cortex. Proceedings Of The National Academy Of Sciences Of The United States Of America 1991, 88: 2083-2087. PMID: 2006147, PMCID: PMC51173, DOI: 10.1073/pnas.88.6.2083.Peer-Reviewed Original ResearchConceptsArea 17Cytoarchitectonic areasVisual cortexSecondary visual cortexPrimary visual cortexPrimate visual cortexAfferent fibersCerebral cortexCortical neuronsThalamic inputsCortical connectionsThalamic fibersCytoarchitectonic regionsCortexCortical parcellationAberrant combinationsArea XProtomap hypothesisCell-cell interactionsNeurons
1990
Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors.
Kuljis R, Rakic P. Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors. Proceedings Of The National Academy Of Sciences Of The United States Of America 1990, 87: 5303-5306. PMID: 2164675, PMCID: PMC54311, DOI: 10.1073/pnas.87.14.5303.Peer-Reviewed Original ResearchConceptsLayers II/IIINeuropeptide YInterblob regionsVisual cortexAspiny stellate cellsCytochrome oxidase-rich blobsCytochrome oxidase blobsPrimate visual cortexRetinal ablationCerebral cortexRetinal neuronsDistinct physiological propertiesControl animalsStellate cellsOperated animalsMacaque monkeysSynaptic connectionsCortexPattern visionRetinal photoreceptorsNeuronsChemoarchitectonic organizationAbsence of cuesColor visionPhotoreceptors
1989
Synaptogenesis in visual cortex of normal and preterm monkeys: evidence for intrinsic regulation of synaptic overproduction.
Bourgeois J, Jastreboff P, Rakic P. Synaptogenesis in visual cortex of normal and preterm monkeys: evidence for intrinsic regulation of synaptic overproduction. Proceedings Of The National Academy Of Sciences Of The United States Of America 1989, 86: 4297-4301. PMID: 2726773, PMCID: PMC287439, DOI: 10.1073/pnas.86.11.4297.Peer-Reviewed Original ResearchConceptsVisual cortexSynaptic overproductionVisual stimulationFirst postnatal monthTime of deliveryAge-matched controlsPrimary visual cortexTime of conceptionControl infantsLaminar distributionPostnatal monthRhesus monkeysCortexQuantitative electron microscopyVisual experienceTime courseSynapsesStimulationMonkeysIntrinsic regulationOverproductionPretermInfantsFetusesWeeksQuantitative autoradiographic mapping of serotonin 5‐HT1 and 5‐HT2 receptors and uptake sites in the neocortex of the rhesus monkey
Lidow M, Goldman‐Rakic P, Gallager D, Rakic P. Quantitative autoradiographic mapping of serotonin 5‐HT1 and 5‐HT2 receptors and uptake sites in the neocortex of the rhesus monkey. The Journal Of Comparative Neurology 1989, 280: 27-42. PMID: 2918094, DOI: 10.1002/cne.902800104.Peer-Reviewed Original ResearchConceptsLayer IIIReceptor subtypesUptake sitesCortical areasVisual cortexLayer IRhesus monkeysPrimary motor cortexSerotonin uptake sitesQuantitative autoradiographic mappingMonkey cerebral cortexDistribution of serotoninPrimary visual cortexPattern of distributionIVC betaAutoradiographic mappingCerebral cortexMotor cortexLayer IVCortical functionOccipital lobePrimary motorPrestriate cortexReceptor distributionCortexNeuropeptide Y-Containing Neurons are Situated Predominantly Outside Cytochrome Oxidase Puffs in Macaque Visual Cortex
Kuljis R, Rakic P. Neuropeptide Y-Containing Neurons are Situated Predominantly Outside Cytochrome Oxidase Puffs in Macaque Visual Cortex. Visual Neuroscience 1989, 2: 57-62. PMID: 2562144, DOI: 10.1017/s0952523800004326.Peer-Reviewed Original ResearchConceptsNeuropeptide YVisual cortexLayers II/IIINumber of NPYLocal circuit neuronsCortico-cortical connectivityCytochrome oxidase histochemistryPrimary visual cortexReceptive field propertiesMacaque visual cortexCircuit neuronsInhibitory GABASynaptic terminalsInterpuffsImmunocytochemical methodsNeuronsEqual volumeCortexPuffsGABA
1988
Differential quenching and limits of resolution in autoradiograms of brain tissue labeled with3H-,125I- and14C-compounds
Lidow M, Goldman-Rakic P, Rakic P, Gallager D. Differential quenching and limits of resolution in autoradiograms of brain tissue labeled with3H-,125I- and14C-compounds. Brain Research 1988, 459: 105-119. PMID: 3167570, DOI: 10.1016/0006-8993(88)90290-9.Peer-Reviewed Original ResearchConceptsBrain sectionsAdult monkeysBrain tissuePrimary motor cortexPrimary visual cortexAutoradiograms of sectionsAdult rhesus monkeysMotor cortexCortical sectionsLaminar patternLayer IIIPrimate brainVisual cortexRhesus monkeysBrain structuresNeocortexCortexSignificant attenuationAutoradiographic measurementFilm autoradiographyMonkeysAutoradiograms
1984
Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining
Kostovic I, Rakic P. Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining. Journal Of Neuroscience 1984, 4: 25-42. PMID: 6693940, PMCID: PMC6564757, DOI: 10.1523/jneurosci.04-01-00025.1984.Peer-Reviewed Original ResearchConceptsPrestriate cortexSubplate zoneCholinesterase stainingChE activityAdjacent neocortical areasPrestriate visual cortexCholinesterase-positive fibersHuman fetal cerebrumNucleus pulvinarisPulvinar inputStage VSubcortical projectionsThalamic nucleiArea 17Fetal brainOccipital lobeNeocortical areasStage IStage IIIStage IVLayer IIIVisual cortexLayer IFetal cerebrumStage II
1983
Geniculo-Cortical Connections in Primates: Normal and Experimentally Altered Development
Rakic P. Geniculo-Cortical Connections in Primates: Normal and Experimentally Altered Development. Progress In Brain Research 1983, 58: 393-404. PMID: 6195694, DOI: 10.1016/s0079-6123(08)60042-4.Peer-Reviewed Original ResearchConceptsVisual cortexDorsal lateral geniculate nucleusFetal rhesus monkeysLateral geniculate nucleusCentral visual pathwaysPrimary visual cortexPrimate visual cortexSynaptic reorganizationCerebral cortexPrenatal mechanismsGeniculate nucleusAfferent connectionsAdult monkeysVisual pathwayRhesus monkeysAnatomical organizationExperimental modelCortexCongenital disorderNormal patternPathological developmentMonkeysColor visionSeries of studiesPrimates
1981
Development of Visual Centers in the Primate Brain Depends on Binocular Competition Before Birth
Rakic P. Development of Visual Centers in the Primate Brain Depends on Binocular Competition Before Birth. Science 1981, 214: 928-931. PMID: 7302569, DOI: 10.1126/science.7302569.Peer-Reviewed Original ResearchConceptsVisual centersPrimate brainAberrant synaptic connectionsLateral geniculate nucleusOcular dominance columnsGeniculate neuronsGeniculate nucleusSynaptic connectivityIntact eyeVisual cortexSynaptic connectionsBinocular competitionCellular layersBrainBirthNotable alterationsEyesNormal inputFiber bandsCortexNeurons