2020
Convergent network effects along the axis of gene expression during prostate cancer progression
Charmpi K, Guo T, Zhong Q, Wagner U, Sun R, Toussaint N, Fritz C, Yuan C, Chen H, Rupp N, Christiansen A, Rutishauser D, Rüschoff J, Fankhauser C, Saba K, Poyet C, Hermanns T, Oehl K, Moore A, Beisel C, Calzone L, Martignetti L, Zhang Q, Zhu Y, Martínez M, Manica M, Haffner M, Aebersold R, Wild P, Beyer A. Convergent network effects along the axis of gene expression during prostate cancer progression. Genome Biology 2020, 21: 302. PMID: 33317623, PMCID: PMC7737297, DOI: 10.1186/s13059-020-02188-9.Peer-Reviewed Original ResearchConceptsHigh-throughput genomic measurementsProstate cancer progressionGene expressionMolecular networksCopy number alterationsCancer progressionComplex genomic alterationsTumor phenotypePrediction of recurrence-free survivalGenomic measurementsRecurrence-free survivalProstate cancer patientsProteomic alterationsGenomic aberrationsAggressive tumor phenotypeGenomic alterationsDownstream proteinsGenomic effectsNetwork-based approachProstate samplesTumor siteBiochemical stateMalignant tumorsProtein levelsTumor tissues
2015
Elucidating Compound Mechanism of Action by Network Perturbation Analysis
Woo J, Shimoni Y, Yang W, Subramaniam P, Iyer A, Nicoletti P, Martínez M, López G, Mattioli M, Realubit R, Karan C, Stockwell B, Bansal M, Califano A. Elucidating Compound Mechanism of Action by Network Perturbation Analysis. Cell 2015, 162: 441-451. PMID: 26186195, PMCID: PMC4506491, DOI: 10.1016/j.cell.2015.05.056.Peer-Reviewed Original ResearchConceptsGenome-wide identificationRegulatory network analysisBind target proteinsCompound's mechanism of actionNovel proteinsTarget proteinsCompound perturbationGlobal dysregulationSmall molecule compoundsCompound similarityProteinNetwork-based approachRepair activityMolecular interactionsTested compoundsCompoundsMechanism of actionNetwork analysisCompound analysisActivity modulationAnticancer drugsCompound efficacyPerturbation profilesSimilarityEffector