MonoNet: enhancing interpretability in neural networks via monotonic features
Nguyen A, Moreno D, Le-Bel N, Martínez M. MonoNet: enhancing interpretability in neural networks via monotonic features. Bioinformatics Advances 2023, 3: vbad016. PMID: 37143924, PMCID: PMC10152389, DOI: 10.1093/bioadv/vbad016.Peer-Reviewed Original ResearchNeural networkMonotonicity constraintsHigh-stakes scenariosInformation-theoretic analysisMachine learning modelsMedical informaticsNeural modelLearning capabilityLearning modelsBioinformatics Advances</i>Monotonous featuresComputational biologyEnhance interpretationModeling capabilitiesDatasetInterpretable modelsLearning processSample dataNetworkPower modelLearningSupplementary dataConstraintsPerformanceInformatics