2024
Calibrating Multi-modal Representations: A Pursuit of Group Robustness without Annotations
You C, Min Y, Dai W, Sekhon J, Staib L, Duncan J. Calibrating Multi-modal Representations: A Pursuit of Group Robustness without Annotations. 2015 IEEE Conference On Computer Vision And Pattern Recognition (CVPR) 2024, 00: 26140-26150. PMID: 39640960, PMCID: PMC11620289, DOI: 10.1109/cvpr52733.2024.02470.Peer-Reviewed Original ResearchDiverse downstream tasksVision-language modelsPre-trained modelsRepresentation of samplesContrastive learningDownstream tasksFeature reweightingTraining dataFeature patternsModel generalizationGroup annotationsPain pointsGroup labelsAnnotationRobustnessClassifierClipsFeaturesDeepDeploymentBenchmarksTime-intensiveCodeTaskLearning
2023
Learning Sequential Information in Task-Based fMRI for Synthetic Data Augmentation
Wang J, Dvornek N, Staib L, Duncan J. Learning Sequential Information in Task-Based fMRI for Synthetic Data Augmentation. Lecture Notes In Computer Science 2023, 14312: 79-88. PMID: 39281201, PMCID: PMC11395879, DOI: 10.1007/978-3-031-44858-4_8.Peer-Reviewed Original ResearchFunctional magnetic resonance imagesData augmentationClassification taskSpecific cognitive tasksMedical image analysisSynthetic data augmentationEffective data augmentationDownstream learning tasksCognitive tasksVariational autoencoder modelLearning taskTraining dataAutoencoder modelTemporal informationTraining datasetSequential informationSynthetic imagesTaskFMRI sequencesImage analysisMultiple perspectivesMagnetic resonance imagesImagesDifferent alternativesPersistent issue
2022
Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation
You C, Xiang J, Su K, Zhang X, Dong S, Onofrey J, Staib L, Duncan J. Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation. Lecture Notes In Computer Science 2022, 13573: 3-16. PMID: 37415747, PMCID: PMC10323962, DOI: 10.1007/978-3-031-18523-6_1.Peer-Reviewed Original ResearchIncremental learningMedical image segmentation tasksMulti-site datasetImage segmentation tasksMedical image segmentationProstate MRI SegmentationComputation resourcesMedical datasetsSegmentation taskImage segmentationSegmentation frameworkEmbedding featuresBenchmark datasetsMRI segmentationTraining dataTarget domainLearning approachPractical deploymentDomain-specific expertiseCompetitive performanceDatasetTraining schemePrior workSegmentationSingle model
2019
Dual Adversarial Autoencoder for Dermoscopic image Generative Modeling
Yang H, Staib L. Dual Adversarial Autoencoder for Dermoscopic image Generative Modeling. 2019, 00: 1247-1250. DOI: 10.1109/isbi.2019.8759293.Peer-Reviewed Original ResearchComputer-Aided DiagnosisAdversarial trainingGenerative modelingComputer vision tasksSkin lesion classificationNew training dataNovel generative modelRealistic synthetic dataVision tasksEnd trainableData augmentationManual effortTraditional autoencoderAided DiagnosisDiscriminator networkAdversarial autoencoderTraining dataTraining iterationsTraining algorithmGenerative modelLesion classificationNumerous tasksImage denoisingAutoencoderDermoscopic images