2024
CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors
Skoulidis F, Araujo H, Do M, Qian Y, Sun X, Cobo A, Le J, Montesion M, Palmer R, Jahchan N, Juan J, Min C, Yu Y, Pan X, Arbour K, Vokes N, Schmidt S, Molkentine D, Owen D, Memmott R, Patil P, Marmarelis M, Awad M, Murray J, Hellyer J, Gainor J, Dimou A, Bestvina C, Shu C, Riess J, Blakely C, Pecot C, Mezquita L, Tabbó F, Scheffler M, Digumarthy S, Mooradian M, Sacher A, Lau S, Saltos A, Rotow J, Johnson R, Liu C, Stewart T, Goldberg S, Killam J, Walther Z, Schalper K, Davies K, Woodcock M, Anagnostou V, Marrone K, Forde P, Ricciuti B, Venkatraman D, Van Allen E, Cummings A, Goldman J, Shaish H, Kier M, Katz S, Aggarwal C, Ni Y, Azok J, Segal J, Ritterhouse L, Neal J, Lacroix L, Elamin Y, Negrao M, Le X, Lam V, Lewis W, Kemp H, Carter B, Roth J, Swisher S, Lee R, Zhou T, Poteete A, Kong Y, Takehara T, Paula A, Parra Cuentas E, Behrens C, Wistuba I, Zhang J, Blumenschein G, Gay C, Byers L, Gibbons D, Tsao A, Lee J, Bivona T, Camidge D, Gray J, Lieghl N, Levy B, Brahmer J, Garassino M, Gandara D, Garon E, Rizvi N, Scagliotti G, Wolf J, Planchard D, Besse B, Herbst R, Wakelee H, Pennell N, Shaw A, Jänne P, Carbone D, Hellmann M, Rudin C, Albacker L, Mann H, Zhu Z, Lai Z, Stewart R, Peters S, Johnson M, Wong K, Huang A, Winslow M, Rosen M, Winters I, Papadimitrakopoulou V, Cascone T, Jewsbury P, Heymach J. CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors. Nature 2024, 635: 462-471. PMID: 39385035, PMCID: PMC11560846, DOI: 10.1038/s41586-024-07943-7.Peer-Reviewed Original ResearchNon-small-cell lung cancerImmune checkpoint blockadeTumor suppressor genePD-L1Advanced non-small-cell lung cancerCD8+ cytotoxic T cellsSuppressor geneCD4+ effector cellsDual immune checkpoint blockadeMouse modelPD-L1 inhibitor durvalumabSuppressive myeloid cellsPD-L1 inhibitorsImmune-related toxicitiesPD-(L)1 inhibitorsAnti-tumor efficacyCytotoxic T cellsMyeloid cell compartmentAdverse tumor microenvironmentAssociated with higher ratesAnti-tumor activityLoss of Keap1CTLA4 inhibitorsSTK11 alterationsCheckpoint blockadeVascular mimicry as a facilitator of melanoma brain metastasis
Provance O, Oria V, Tran T, Caulfield J, Zito C, Aguirre-Ducler A, Schalper K, Kluger H, Jilaveanu L. Vascular mimicry as a facilitator of melanoma brain metastasis. Cellular And Molecular Life Sciences 2024, 81: 188. PMID: 38635031, PMCID: PMC11026261, DOI: 10.1007/s00018-024-05217-z.Peer-Reviewed Original ResearchConceptsVascular mimicryBrain metastasesMouse model of metastatic melanomaIncreased risk of metastasisAssociated with tumor volumeMelanoma brain metastasesRisk of metastasisSurvival of miceFuture treatment regimensCell line modelsTumor suppressor pathwayMetastatic melanomaTumor volumeSolid tumorsTreatment regimensTumor typesPoor prognosisHippo tumor suppressor pathwayIncreased riskMouse modelDownstream targets YAPMelanomaMetastasisSuppressor pathwayTumor
2017
Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer
Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, Wurtz A, Dong W, Cai G, Melnick MA, Du VY, Schlessinger J, Goldberg SB, Chiang A, Sanmamed MF, Melero I, Agorreta J, Montuenga LM, Lifton R, Ferrone S, Kavathas P, Rimm DL, Kaech SM, Schalper K, Herbst RS, Politi K. Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer. Cancer Discovery 2017, 7: cd-17-0593. PMID: 29025772, PMCID: PMC5718941, DOI: 10.1158/2159-8290.cd-17-0593.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsPatient-derived xenograftsHLA class ILung cancerClass ICell surface HLA class ILung cancer mouse modelPD-1 blockadeStandard treatment algorithmCancer mouse modelLung cancer samplesDefective antigen processingCheckpoint inhibitorsPD-1Treatment algorithmMouse modelAntagonistic antibodiesDiverse malignanciesAntigen processingCancer samplesB2MHomozygous lossTumorsCancerRecurrent mutations
2015
Nivolumab and Urelumab Enhance Antitumor Activity of Human T Lymphocytes Engrafted in Rag2−/−IL2Rγnull Immunodeficient Mice
Sanmamed MF, Rodriguez I, Schalper KA, Oñate C, Azpilikueta A, Rodriguez-Ruiz ME, Morales-Kastresana A, Labiano S, Pérez-Gracia JL, Martín-Algarra S, Alfaro C, Mazzolini G, Sarno F, Hidalgo M, Korman AJ, Jure-Kunkel M, Melero I. Nivolumab and Urelumab Enhance Antitumor Activity of Human T Lymphocytes Engrafted in Rag2−/−IL2Rγnull Immunodeficient Mice. Cancer Research 2015, 75: 3466-3478. PMID: 26113085, DOI: 10.1158/0008-5472.can-14-3510.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, MonoclonalColorectal NeoplasmsDNA-Binding ProteinsGraft vs Host DiseaseHT29 CellsHumansInterleukin Receptor Common gamma SubunitLeukocytes, MononuclearLymphocyte ActivationMiceNivolumabProgrammed Cell Death 1 ReceptorT-LymphocytesTumor Necrosis Factor Receptor Superfamily, Member 9ConceptsPeripheral blood mononuclear cellsT lymphocytesHuman T lymphocytesAllogeneic human peripheral blood mononuclear cellsHuman peripheral blood mononuclear cellsT cell-mediated diseaseImmune checkpoint drugsImmunostimulatory monoclonal antibodiesCell-mediated diseaseRegulatory T lymphocytesHumanized murine modelBlood mononuclear cellsHumanized mouse modelPreclinical model systemsLymphocyte infiltrationTherapeutic regimenMononuclear cellsCell surface expressionCancer immunologyGastric carcinomaImmunodeficient miceMurine modelMouse modelSame patientTumor xenografts