2024
A Hybrid Transformer-Convolutional Neural Network for Segmentation of Intracerebral Hemorrhage and Perihematomal Edema on Non-Contrast Head Computed Tomography (CT) with Uncertainty Quantification to Improve Confidence
Tran A, Desser D, Zeevi T, Abou Karam G, Dierksen F, Dell’Orco A, Kniep H, Hanning U, Fiehler J, Zietz J, Sanelli P, Malhotra A, Duncan J, Aneja S, Falcone G, Qureshi A, Sheth K, Nawabi J, Payabvash S. A Hybrid Transformer-Convolutional Neural Network for Segmentation of Intracerebral Hemorrhage and Perihematomal Edema on Non-Contrast Head Computed Tomography (CT) with Uncertainty Quantification to Improve Confidence. Bioengineering 2024, 11: 1274. DOI: 10.3390/bioengineering11121274.Peer-Reviewed Original ResearchNon-contrast head computed tomographyPerihematomal edemaHead computed tomographyIntracerebral hemorrhageComputed tomographyVolume similarityUniversity Medical Center Hamburg-EppendorfSecondary brain injuryYale cohortInfratentorial locationMulticentre trialCT scanTreatment planningNon-contrastHamburg-EppendorfImaging markersHemorrhagic strokeHemorrhageEdemaCohortBrain injuryDice coefficientUncertainty-aware deep-learning model for prediction of supratentorial hematoma expansion from admission non-contrast head computed tomography scan
Tran A, Zeevi T, Haider S, Abou Karam G, Berson E, Tharmaseelan H, Qureshi A, Sanelli P, Werring D, Malhotra A, Petersen N, de Havenon A, Falcone G, Sheth K, Payabvash S. Uncertainty-aware deep-learning model for prediction of supratentorial hematoma expansion from admission non-contrast head computed tomography scan. Npj Digital Medicine 2024, 7: 26. PMID: 38321131, PMCID: PMC10847454, DOI: 10.1038/s41746-024-01007-w.Peer-Reviewed Original ResearchDeep learning modelsHematoma expansionIntracerebral hemorrhageICH expansionComputed tomographyNon-contrast head CTNon-contrast head computed tomographyHigh risk of HEHead computed tomographyHigh-confidence predictionsRisk of HENon-contrast headReceiver operating characteristic areaModifiable risk factorsMonte Carlo dropoutOperating characteristics areaPotential treatment targetHead CTVisual markersIdentified patientsAutomated deep learning modelDataset of patientsRisk factorsHigh riskPatients
2021
Acute Stroke Imaging Research Roadmap IV: Imaging Selection and Outcomes in Acute Stroke Clinical Trials and Practice
Campbell B, Lansberg M, Broderick J, Derdeyn C, Khatri P, Sarraj A, Saver J, Vagal A, Albers G, Adeoye O, Ansari S, Boltze J, Buchan A, Chaisinanunkul N, Chen C, Davis T, Ermakova T, Fisher M, Haddad W, Hill M, Houser G, Jadhav A, Kimberly W, Landen J, Liebeskind D, Lyden P, Lynch J, Mansi C, Mocco J, Nogueira R, Savitz S, Schwamm L, Sheth K, Solberg Y, Venkatasubramanian C, Warach S, Wechsler L, Zhu B, Ziogas N. Acute Stroke Imaging Research Roadmap IV: Imaging Selection and Outcomes in Acute Stroke Clinical Trials and Practice. Stroke 2021, 52: 2723-2733. PMID: 34233464, PMCID: PMC8316368, DOI: 10.1161/strokeaha.121.035132.Peer-Reviewed Original ResearchConceptsPrimary stroke centerAcute stroke clinical trialsStroke centersStroke clinical trialsReperfusion therapyClinical trialsConsensus recommendationsComprehensive stroke centerAcute stroke trialsImaging sessionOptimal imaging strategyExtended time windowStroke neurologistsAcute strokeStroke trialsImaging selectionComputed tomographyTreatment windowUS FoodDrug AdministrationNeurological disordersStroke imagingTrialsNational InstituteOptimal imaging