2016
Myriad Triple-Helix-Forming Structures in the Transposable Element RNAs of Plants and Fungi
Tycowski KT, Shu MD, Steitz JA. Myriad Triple-Helix-Forming Structures in the Transposable Element RNAs of Plants and Fungi. Cell Reports 2016, 15: 1266-1276. PMID: 27134163, PMCID: PMC4864102, DOI: 10.1016/j.celrep.2016.04.010.Peer-Reviewed Original ResearchConceptsTransposable elementsCellular noncoding RNAsPotential evolutionary consequencesCis-acting RNA structuresIntron lossEvolutionary consequencesBioinformatic identificationTE transcriptsReporter transcriptFish speciesNoncoding RNAsElement RNAHorizontal transferRNA structureTransposase geneRich tractHuman cellsTriple helix formationBase triplesRNAEne coreTranscriptsTriple helixIntronlessGenome
2013
RNA families in Epstein–Barr virus
Moss WN, Lee N, Pimienta G, Steitz JA. RNA families in Epstein–Barr virus. RNA Biology 2013, 11: 10-17. PMID: 24441309, PMCID: PMC3929418, DOI: 10.4161/rna.27488.Peer-Reviewed Original ResearchConceptsEpstein-Barr virusFunctional importanceSmall regulatory RNAsNovel Epstein-Barr virusSmall nucleolar RNAsLikely functional importanceInternal ribosomal entry siteRNA-seq studiesHuman γ-herpesvirusEvolutionary conservationNovel ncRNARegulatory RNAsShort intronsRecent bioinformaticsNucleolar RNAsOncogenic typesRNA familiesTumorigenic phenotypeStructured RNAsEBV genomeEBNA1 mRNARepetitive regionsViral latencyHigh abundanceLatency maintenanceGenome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA
Moss WN, Steitz JA. Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA. BMC Genomics 2013, 14: 543. PMID: 23937650, PMCID: PMC3751371, DOI: 10.1186/1471-2164-14-543.Peer-Reviewed Original ResearchConceptsStable intronic sequence RNARNA structureSequence RNAComprehensive genome-wide surveyGenome-wide surveyGenome-wide analysisRNA-seq analysisComparative sequence analysisNon-coding RNAsSecondary structure modelRNA-seq dataRNAz programFunctional RNAsGenomic sequencesImportant human pathogenSequence analysisRNAEBV transcriptomeHuman pathogensHerpesvirus 4Future experimental analysisPotential functionTranscriptomeGenomeEBV genome
2012
Conservation of a Triple-Helix-Forming RNA Stability Element in Noncoding and Genomic RNAs of Diverse Viruses
Tycowski KT, Shu MD, Borah S, Shi M, Steitz JA. Conservation of a Triple-Helix-Forming RNA Stability Element in Noncoding and Genomic RNAs of Diverse Viruses. Cell Reports 2012, 2: 26-32. PMID: 22840393, PMCID: PMC3430378, DOI: 10.1016/j.celrep.2012.05.020.Peer-Reviewed Original ResearchConceptsPAN RNAKaposi's sarcoma-associated herpesvirusSarcoma-associated herpesvirusStructure-based bioinformaticsRNA decay pathwaysDiverse viral genomesRNA stability elementNuclear retention elementPositive-strand RNA virusesReporter transcriptMammalian herpesvirusesGenomic RNAStability elementDNA virusesHuman cellsTriple helix formationRNA virusesDiverse virusesViral genomeRNAAbundant expressionDecay pathwaysTriple helixRetention elementsRapid identification
2010
Down-Regulation of a Host MicroRNA by a Herpesvirus saimiri Noncoding RNA
Cazalla D, Yario T, Steitz JA. Down-Regulation of a Host MicroRNA by a Herpesvirus saimiri Noncoding RNA. Science 2010, 328: 1563-1566. PMID: 20558719, PMCID: PMC3075239, DOI: 10.1126/science.1187197.Peer-Reviewed Original ResearchConceptsHSURs 1Noncoding RNAsHost cell gene expressionMiR-27Binding-dependent mannerPotential binding sitesMiRNA pathwayHost cell microRNAsCoimmunoprecipitation experimentsEctopic expressionTarget genesTransient knockdownGene expressionUnknown functionHost microRNAsViral strategiesDown regulationBinding sitesMiRNAsMicroRNAsRNAExpressionCellsT cellsNcRNA
2008
Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′‐end maturation
Kolev NG, Yario TA, Benson E, Steitz JA. Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′‐end maturation. EMBO Reports 2008, 9: 1013-1018. PMID: 18688255, PMCID: PMC2572124, DOI: 10.1038/embor.2008.146.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceBase SequenceCell LineCleavage And Polyadenylation Specificity FactorConserved SequenceEndonucleasesEnzyme ActivationHeLa CellsHistonesHumansMolecular Sequence DataProtein Structure, TertiaryProtein SubunitsRNA 3' End ProcessingRNA PrecursorsRNA, MessengerConceptsPre-messenger RNAPolyadenylation specificity factorMammalian proteinsRNase ZConserved motifsHistone mRNASpecificity factorEndonucleolytic cleavageActive endonucleaseEndonuclease activityMBL familyComplex machineryMessenger RNAPoint mutationsCPSF73CPSF100Process of maturationMaturation processRNAProteinMotifMRNAMaturationEukaryotesCleavage
2002
Exclusive Interaction of the 15.5 kD Protein with the Terminal Box C/D Motif of a Methylation Guide snoRNP
Szewczak LB, DeGregorio SJ, Strobel SA, Steitz JA. Exclusive Interaction of the 15.5 kD Protein with the Terminal Box C/D Motif of a Methylation Guide snoRNP. Cell Chemical Biology 2002, 9: 1095-1107. PMID: 12401494, DOI: 10.1016/s1074-5521(02)00239-9.Peer-Reviewed Original ResearchConceptsBox C/D motifKD proteinD motifBox C/D snoRNAsBox C/D snoRNPsSite-specific methylationSpliceosomal RNAsDeleterious substitutionsD snoRNAsD snoRNPsBox DExclusive interactionsInteraction sitesXenopus oocytesSnoRNPsProteinMotifSnoRNAsVivoMethylationA89Single interaction siteRNAExocyclic amineOocytes
1998
HNS, a nuclear-cytoplasmic shuttling sequence in HuR
Fan X, Steitz J. HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 15293-15298. PMID: 9860962, PMCID: PMC28036, DOI: 10.1073/pnas.95.26.15293.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAmino Acid SequenceAnimalsAntigens, SurfaceCell NucleusConserved SequenceCytoplasmELAV ProteinsELAV-Like Protein 1HeLa CellsHeterogeneous-Nuclear Ribonucleoprotein KHumansMiceMolecular Sequence DataRecombinant ProteinsRibonucleoproteinsRNA, MessengerRNA-Binding ProteinsSequence AlignmentSequence Homology, Amino AcidTransfectionXenopusConceptsHeterogeneous nuclear ribonucleoprotein KNuclear localization signal activityClassical nuclear localization signalAU-rich element-containing mRNAsExport of mRNAHeterogeneous nuclear ribonucleoprotein A1Nuclear export signalNuclear localization signalNuclear transport processRNA-binding proteinAU-rich elementsExport signalLocalization signalM9 sequenceNuclear poresDomain sequencesCytoplasmic compartmentUntranslated regionLabile mRNAsCell nucleiSpecific signalsHuRProteinBidirectional transportMRNAAUUUA Sequences Direct mRNA Deadenylation Uncoupled from Decay during Xenopus Early Development
Voeltz G, Steitz J. AUUUA Sequences Direct mRNA Deadenylation Uncoupled from Decay during Xenopus Early Development. Molecular And Cellular Biology 1998, 18: 7537-7545. PMID: 9819439, PMCID: PMC109334, DOI: 10.1128/mcb.18.12.7537.Peer-Reviewed Original ResearchConceptsAU-rich elementsXenopus early developmentGranulocyte-macrophage colony-stimulating factor (GM-CSF) geneUntranslated region sequencesHuman granulocyte-macrophage colony-stimulating factor geneChimeric mRNAMid-blastula transitionEarly developmentColony-stimulating factor geneRNA deadenylationMRNA decayRapid deadenylationMRNA deadenylationDeadenylation activityDeadenylationFactor genesRegion sequencesEgg activationAUUUAC-MycMature eggsXenopus oocytesMRNAOocytesXenopus
1997
Pre-mRNA splicing: the discovery of a new spliceosome doubles the challenge
Tarn W, Steitz J. Pre-mRNA splicing: the discovery of a new spliceosome doubles the challenge. Trends In Biochemical Sciences 1997, 22: 132-137. PMID: 9149533, DOI: 10.1016/s0968-0004(97)01018-9.Peer-Reviewed Original Research
1996
Highly Diverged U4 and U6 Small Nuclear RNAs Required for Splicing Rare AT-AC Introns
Tarn W, Steitz J. Highly Diverged U4 and U6 Small Nuclear RNAs Required for Splicing Rare AT-AC Introns. Science 1996, 273: 1824-1832. PMID: 8791582, DOI: 10.1126/science.273.5283.1824.Peer-Reviewed Original Research
1995
Decreasing the distance between the two conserved sequence elements of histone pre-messenger RNA interferes with 3' processing in vitro.
Cho DC, Scharl EC, Steitz JA. Decreasing the distance between the two conserved sequence elements of histone pre-messenger RNA interferes with 3' processing in vitro. RNA 1995, 1: 905-14. PMID: 8548655, PMCID: PMC1369339.Peer-Reviewed Original ResearchAnimalsBase SequenceBinding SitesConserved SequenceHistonesMolecular Sequence DataMRNA Cleavage and Polyadenylation FactorsNuclear ProteinsNucleic Acid ConformationRibonucleoproteins, Small NuclearRNA PrecursorsRNA Processing, Post-TranscriptionalRNA, MessengerRNA-Binding ProteinsSequence DeletionSubstrate SpecificityTranscription, GeneticU12 snRNA in vertebrates: evolutionary conservation of 5' sequences implicated in splicing of pre-mRNAs containing a minor class of introns.
Tarn WY, Yario TA, Steitz JA. U12 snRNA in vertebrates: evolutionary conservation of 5' sequences implicated in splicing of pre-mRNAs containing a minor class of introns. RNA 1995, 1: 644-56. PMID: 7489523, PMCID: PMC1369308.Peer-Reviewed Original ResearchConceptsU12 snRNASnRNA genesMinor class intronsRNA polymerase IIU6 snRNA sequencesMinor classPutative branch siteNoncanonical splice sitesMajor classesEvolutionary conservationBranch site sequencePolymerase IIU2 genesFunctional genesSnRNA sequencesIntronsConsensus sequenceSnRNASite sequenceUpstream elementSplice siteSplicingGenesTranscriptionBranch site
1994
Sequence and structural elements critical for U8 snRNP function in Xenopus oocytes are evolutionarily conserved.
Peculis BA, Steitz JA. Sequence and structural elements critical for U8 snRNP function in Xenopus oocytes are evolutionarily conserved. Genes & Development 1994, 8: 2241-2255. PMID: 7958892, DOI: 10.1101/gad.8.18.2241.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBiological EvolutionChromosomal Proteins, Non-HistoneConserved SequenceFemaleMethylationMolecular Sequence DataMutagenesis, Site-DirectedMutationNucleic Acid ConformationOocytesRibonucleoproteins, Small NuclearRNA CapsRNA PrecursorsRNA Processing, Post-TranscriptionalRNA, Small NuclearXenopus
1993
A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3.
Tycowski KT, Shu MD, Steitz JA. A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3. Genes & Development 1993, 7: 1176-1190. PMID: 8319909, DOI: 10.1101/gad.7.7a.1176.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceCell NucleolusCell-Free SystemConserved SequenceElectrophoresis, Polyacrylamide GelHeLa CellsHumansIntronsMolecular Sequence DataNucleic Acid ConformationRestriction MappingRibosomal ProteinsRNA PrecursorsRNA Processing, Post-TranscriptionalRNA, Small NuclearSequence Analysis, RNAUracil NucleotidesConceptsSmall nucleolar RNAsNucleolar RNAsRibosomal protein S3 geneNuclear RNA polymerasesSingle-copy geneSingle primary transcriptRibosomal protein S3Secondary structure modelStem-loop structureVertebrate cellsNucleolar proteinsProtein S3Transcription signalsHuman genesRNA polymerasePrimary transcriptConserved sequencesS3 geneNucleolar snRNASame strandS3 mRNANucleotides downstreamMature endNucleolar componentsIntron 1
1992
Site-specific cross-linking of mammalian U5 snRNP to the 5' splice site before the first step of pre-mRNA splicing.
Wyatt JR, Sontheimer EJ, Steitz JA. Site-specific cross-linking of mammalian U5 snRNP to the 5' splice site before the first step of pre-mRNA splicing. Genes & Development 1992, 6: 2542-2553. PMID: 1340469, DOI: 10.1101/gad.6.12b.2542.Peer-Reviewed Original ResearchConceptsSplice siteMRNA splicingATP-dependent interactionHeLa nuclear extractsU5 snRNPMRNA substratesSplice site regionProtein factorsU5 snRNANucleotides upstreamU6 snRNAPre-mRNANuclear extractsSplicingSite regionLoop sequenceCross-link formationSnRNASplicing conditionsWatson-Crick complementarityCross-linking strategyU1Selective photoactivationSnRNPMammalian