2019
Anopheles gambiae Lacking AgTRIO Inefficiently Transmits Plasmodium berghei to Mice
Chuang YM, Freudzon M, Yang J, Dong Y, Dimopoulos G, Fikrig E. Anopheles gambiae Lacking AgTRIO Inefficiently Transmits Plasmodium berghei to Mice. Infection And Immunity 2019, 87: 10.1128/iai.00326-19. PMID: 31285253, PMCID: PMC6704594, DOI: 10.1128/iai.00326-19.Peer-Reviewed Original ResearchConceptsBite siteControl mosquitoesMosquito salivary proteinsInfectivity of sporozoitesMosquito salivary glandsProinflammation cytokinesSporozoite infectionRNA interference-mediated silencingPlasmodium bergheiMiceSalivary glandsSporozoitesTNFExpression of genesMosquitoesSalivary proteinsBurdenExpressionVertebrate hostsSplenocytesCytokinesInfectionCell adhesionLiverBerghei
2014
Gut Microbiota of the Tick Vector Ixodes scapularis Modulate Colonization of the Lyme Disease Spirochete
Narasimhan S, Rajeevan N, Liu L, Zhao YO, Heisig J, Pan J, Eppler-Epstein R, DePonte K, Fish D, Fikrig E. Gut Microbiota of the Tick Vector Ixodes scapularis Modulate Colonization of the Lyme Disease Spirochete. Cell Host & Microbe 2014, 15: 58-71. PMID: 24439898, PMCID: PMC3905459, DOI: 10.1016/j.chom.2013.12.001.Peer-Reviewed Original ResearchConceptsPeritrophic matrixTranscription factor signal transducerPathogen colonizationLyme disease spirochete Borrelia burgdorferiActivator of transcriptionGut microbiotaArthropod gutsSignal transducerLyme disease spirocheteFunctional linkArthropod vectorsMajor vectorKey glycoproteinsHuman pathogensSpirochete Borrelia burgdorferiGut epitheliumIxodes scapularis ticksColonizationGut epithelial barrierMicrobiotaExpressionGut lumenScapularis ticksBorrelia burgdorferiEpithelial barrier
2012
Expression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogaster
Neelakanta G, Hudson AM, Sultana H, Cooley L, Fikrig E. Expression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogaster. PLOS ONE 2012, 7: e33447. PMID: 22428051, PMCID: PMC3302814, DOI: 10.1371/journal.pone.0033447.Peer-Reviewed Original ResearchMeSH KeywordsAcclimatizationAnalysis of VarianceAnimalsAnimals, Genetically ModifiedAntifreeze ProteinsApoptosisCold TemperatureDrosophila melanogasterEmbryo, NonmammalianEnzyme-Linked Immunosorbent AssayFemaleImmunoblottingIn Situ Nick-End LabelingIxodesMaleMusclesOligonucleotidesReal-Time Polymerase Chain ReactionConceptsNon-freezing temperaturesD. melanogasterDrosophila melanogasterCold toleranceLow non-freezing temperaturesFemale adult fliesTransgenic D. melanogasterCold shock injuryAbility of fliesAntifreeze glycoproteinsAdult fliesMolecular basisMelanogasterFlight musclesFliesAntifreeze proteinsHatching rateHigher survival rateApoptotic damageGlycoproteinExpressionToleranceEmbryosProteinApoptosisThe Circadian Clock Controls Toll-like Receptor 9-Mediated Innate and Adaptive Immunity
Silver AC, Arjona A, Walker WE, Fikrig E. The Circadian Clock Controls Toll-like Receptor 9-Mediated Innate and Adaptive Immunity. Immunity 2012, 36: 251-261. PMID: 22342842, PMCID: PMC3315694, DOI: 10.1016/j.immuni.2011.12.017.Peer-Reviewed Original ResearchConceptsToll-like receptor 9Receptor 9Adaptive immune responsesInnate immune systemCircadian molecular clockSepsis inductionTLR9 expressionTLR9 ligandsImmune responseVaccination modelAdaptive immunityMouse modelImmune systemDisease severityHomeostatic processesCircadian rhythmBiologic processesDirect molecular linkMolecular linkRhythmSepsisImmunotherapyImmunoprophylaxisExpressionInnate
2011
Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells
Silver AC, Arjona A, Hughes ME, Nitabach MN, Fikrig E. Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behavior And Immunity 2011, 26: 407-413. PMID: 22019350, PMCID: PMC3336152, DOI: 10.1016/j.bbi.2011.10.001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsARNTL Transcription FactorsB-LymphocytesCircadian RhythmCircadian Rhythm Signaling Peptides and ProteinsCLOCK ProteinsDendritic CellsDNA-Binding ProteinsGene ExpressionMacrophagesMiceNuclear Receptor Subfamily 1, Group D, Member 1Period Circadian ProteinsPhotoperiodSpleenTranscription FactorsConceptsMolecular clock mechanismClock genesClock mechanismGene expressionClock-controlled transcription factorsFunctional molecular clockAspects of physiologyConstant environmental conditionsMolecular clockTranscription factorsCircadian expressionB cellsEnvironmental conditionsLight-dark cycleMouse macrophagesDaily rhythmsGenesExpressionCellsDendritic cellsMurine spleenMammalsMacrophagesSplenic NK cellsImmune cells
2009
Toll-Like Receptors 1 and 2 Heterodimers Alter Borrelia burgdorferi Gene Expression in Mice and Ticks
Fikrig E, Narasimhan S, Neelakanta G, Pal U, Chen M, Flavell R. Toll-Like Receptors 1 and 2 Heterodimers Alter Borrelia burgdorferi Gene Expression in Mice and Ticks. The Journal Of Infectious Diseases 2009, 200: 1331-1340. PMID: 19754309, PMCID: PMC2846271, DOI: 10.1086/605950.Peer-Reviewed Original ResearchConceptsGene expressionMicroarray analysisB. burgdorferi gene expressionQuantitative reverse transcription-polymerase chain reaction analysisToll-like receptor 1Reverse transcription-polymerase chain reaction analysisReceptor 1Expression profilesWild-type animalsHost TLRsArthropod vectorsMessenger RNA levelsPolymerase chain reaction analysisChain reaction analysisB. burgdorferi-infected ticksGenesBurgdorferi-infected ticksRNA levelsExpressionMurine hostBorrelia burgdorferiReaction analysisWild-type miceAnimalsHeterodimers
2007
Tick–host–pathogen interactions in Lyme borreliosis
Hovius JW, van Dam AP, Fikrig E. Tick–host–pathogen interactions in Lyme borreliosis. Trends In Parasitology 2007, 23: 434-438. PMID: 17656156, DOI: 10.1016/j.pt.2007.07.001.Peer-Reviewed Original ResearchConceptsVertebrate hostsB. burgdorferi survivalB. burgdorferi genesEnzootic life cycleSpirochete survivalGene productsB. burgdorferiArthropod vectorsGenesVector moleculesLife cycleDifferent environmentsHostBorrelia burgdorferiIxodes ticksTROSPATicksSpirochetal agentBurgdorferiLyme borreliosisMicrobesSalp15ExpressionSurvival
2006
Disruption of the salivary protein 14 in Ixodes scapularis nymphs and impact on pathogen acquisition.
PEDRA JH, Narasimhan S, Deponte K, Marcantonio N, KANTOR FS, Fikrig E. Disruption of the salivary protein 14 in Ixodes scapularis nymphs and impact on pathogen acquisition. American Journal Of Tropical Medicine And Hygiene 2006, 75: 677-82. PMID: 17038693, DOI: 10.4269/ajtmh.2006.75.677.Peer-Reviewed Original ResearchConceptsScapularis nymphsProtein 14Adult Ixodes scapularisIxodes scapularis nymphsI. scapularisBorrelia burgdorferiTick feedingI. scapularis nymphsB. burgdorferiFamily expressionEngorgement weightTick weightPhysiological rolePathogen acquisitionBurgdorferiIxodes scapularisRNA interferenceExpressionDifferent mechanismsFeedingScapularisBorrelia burgdorferi Lacking BBK32, a Fibronectin-Binding Protein, Retains Full Pathogenicity
Li X, Liu X, Beck DS, Kantor FS, Fikrig E. Borrelia burgdorferi Lacking BBK32, a Fibronectin-Binding Protein, Retains Full Pathogenicity. Infection And Immunity 2006, 74: 3305-3313. PMID: 16714558, PMCID: PMC1479267, DOI: 10.1128/iai.02035-05.Peer-Reviewed Original ResearchConceptsB. burgdorferiFlat ticksB. burgdorferi proteinsTick biteSpirochete acquisitionLyme disease spirocheteAdverse effectsBorrelia burgdorferiFibronectin-binding proteinBurgdorferiFibronectin binding proteinMiceSpirochete life cycleLyme pathogenesisB. burgdorferi B31Mammalian hostsSyringe inoculationExpression profilesBBK32Surface lipoproteinsFibronectin bindingPathogenesisExpressionInfectionTemporal expression profilesAn Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands
Sukumaran B, Narasimhan S, Anderson JF, DePonte K, Marcantonio N, Krishnan MN, Fish D, Telford SR, Kantor FS, Fikrig E. An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. Journal Of Experimental Medicine 2006, 203: 1507-1517. PMID: 16717118, PMCID: PMC2118316, DOI: 10.1084/jem.20060208.Peer-Reviewed Original ResearchConceptsA. phagocytophilum-infected miceRNA interference-mediated silencingA. phagocytophilumTick salivary proteinsI. scapularis salivary glandsRickettsia-like pathogensTick salivary glandsMammalian hostsGenus RickettsiaAnaplasma phagocytophilumGene expressionSalivary glandsIntracellular organismsArthropodsSalivary proteinsPathogensProteinPhagocytophilumExpressionTicksHuman anaplasmosisSilencingGenesOrganismsAnaplasma
2003
Adaptation of Borrelia burgdorferi in the tick and the mammalian host
Anguita J, Hedrick MN, Fikrig E. Adaptation of Borrelia burgdorferi in the tick and the mammalian host. FEMS Microbiology Reviews 2003, 27: 493-504. PMID: 14550942, DOI: 10.1016/s0168-6445(03)00036-6.Peer-Reviewed Original ResearchConceptsMammalian hostsGene expressionRegulation of genesAdaptation of BorreliaGene productsDifferent environmentsArthropod vectorsEnzootic cycleCurrent knowledgeLife cycleHostExpressionCausative agentB. burgdorferiBorrelia burgdorferiGenesSpirochetesTicksBurgdorferiMicroorganismsGreater abilityRegulationLyme diseaseThorough understandingFunction
2002
Differential Expression of the p44 Gene Family in the Agent of Human Granulocytic Ehrlichiosis
IJdo JW, Wu C, Telford SR, Fikrig E. Differential Expression of the p44 Gene Family in the Agent of Human Granulocytic Ehrlichiosis. Infection And Immunity 2002, 70: 5295-5298. PMID: 12183586, PMCID: PMC128253, DOI: 10.1128/iai.70.9.5295-5298.2002.Peer-Reviewed Original ResearchConceptsP44 geneDifferential expressionHuman granulocytic ehrlichiosisGene familyAntigenic variationHGE bacteriaTransmission feedingGranulocytic ehrlichiosisGenesHypervariable regionInfected C3H miceP44 expressionTick transmissionExpressionSCID miceC3H miceHGE infectionMurine modelInfected ticksSalivary glandsNymphal ticksMiceTicksEhrlichiosisBacteriaExamination of the Borrelia burgdorferi Transcriptome in Ixodes scapularis during Feeding
Narasimhan S, Santiago F, Koski RA, Brei B, Anderson JF, Fish D, Fikrig E. Examination of the Borrelia burgdorferi Transcriptome in Ixodes scapularis during Feeding. Journal Of Bacteriology 2002, 184: 3122-3125. PMID: 12003955, PMCID: PMC135063, DOI: 10.1128/jb.184.11.3122-3125.2002.Peer-Reviewed Original ResearchConceptsBorrelia burgdorferi gene expressionB. burgdorferi genesPeriplasmic proteinsSignal transductionChromosomal genesPutative lipoproteinSubstrate transportGene expressionDifferential expressionGenesEnergy metabolismIxodes scapularis ticksGlobal analysisIxodes scapularisScapularis ticksExpressionTranscriptomeTransductionTicksProteinFeedingMetabolismScapularis
2000
Inhibition of Th1 Differentiation by IL-6 Is Mediated by SOCS1
Diehl S, Anguita J, Hoffmeyer A, Zapton T, Ihle J, Fikrig E, Rincón M. Inhibition of Th1 Differentiation by IL-6 Is Mediated by SOCS1. Immunity 2000, 13: 805-815. PMID: 11163196, DOI: 10.1016/s1074-7613(00)00078-9.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigen-Presenting CellsCarrier ProteinsCell DifferentiationDNA-Binding ProteinsGene ExpressionInterferon-gammaInterleukin-12Interleukin-4Interleukin-6MiceReceptors, InterferonRepressor ProteinsSignal TransductionSTAT1 Transcription FactorSuppressor of Cytokine Signaling 1 ProteinSuppressor of Cytokine Signaling ProteinsTh1 CellsTrans-ActivatorsUp-RegulationConceptsIFNgamma gene expressionReceptor-mediated signalsIndependent molecular mechanismsFunctional pleiotropyTranscription 1 (STAT1) phosphorylationNovel functionNegative regulationSignal transducerGene expressionMolecular mechanismsCell differentiationCell typesT cell activationDifferentiationTh2 differentiationTh1 differentiationCell activationNonimmune cellsExpressionTh1 cell differentiationImportant roleCellsInhibitionPleiotropyPhosphorylation