2009
Image analysis of soft-tissue in-growth and attachment into highly porous alumina ceramic foam metals
Khalil A, Aponte C, Zhang R, Davisson T, Dickey I, Engelman D, Hawkins M, Mason M. Image analysis of soft-tissue in-growth and attachment into highly porous alumina ceramic foam metals. Medical Engineering & Physics 2009, 31: 775-783. PMID: 19297233, DOI: 10.1016/j.medengphy.2009.02.007.Peer-Reviewed Original ResearchConceptsMechanical peel testDifferent pore sizesFoam metalPeel testModulus maxima methodPore sizeWavelet transform modulus maxima methodArtificial implantsMetal implantsFourier transform analysisTransform analysisDetailed quantitative characterizationMaximum methodImage analysisQuantitative characterizationImplantsMorphological structure
2006
Mutations of Conserved Glycine Residues within the Membrane-Spanning Domain of Human Immunodeficiency Virus Type 1 gp41 Can Inhibit Membrane Fusion and Incorporation of Env onto Virions
Miyauchi K, Curran R, Matthews E, Komano J, Hoshino T, Engelman D, Matsuda Z. Mutations of Conserved Glycine Residues within the Membrane-Spanning Domain of Human Immunodeficiency Virus Type 1 gp41 Can Inhibit Membrane Fusion and Incorporation of Env onto Virions. Japanese Journal Of Infectious Diseases 2006, 59: 77-84. PMID: 16632906, DOI: 10.7883/yoken.jjid.2006.77.Peer-Reviewed Original Research
2003
Amphipols: polymeric surfactants for membrane biology research
Popot J, Berry E, Charvolin D, Creuzenet C, Ebel C, Engelman D, Flötenmeyer M, Giusti F, Gohon Y, Hervé P, Hong Q, Lakey J, Leonard K, Shuman H, Timmins P, Warschawski D, Zito F, Zoonens M, Pucci B, Tribet C. Amphipols: polymeric surfactants for membrane biology research. Cellular And Molecular Life Sciences 2003, 60: 1559-1574. PMID: 14513831, PMCID: PMC11138540, DOI: 10.1007/s00018-003-3169-6.Peer-Reviewed Original ResearchConceptsMembrane proteinsQuasi-irreversible mannerPolymeric surfactantsAmphiphilic polymersMembrane biologyAqueous solutionTransmembrane surfaceAmphipolsBiology researchDissociating characterPutative usesNative stateSurfactantsNovel familyProteinCurrent knowledgeRapid inactivationNoncovalentDetergentsPolymersBiologyCompoundsComplexesInactivationAbsence
2001
Computation and mutagenesis suggest a right‐handed structure for the synaptobrevin transmembrane dimer
Fleming K, Engelman D. Computation and mutagenesis suggest a right‐handed structure for the synaptobrevin transmembrane dimer. Proteins Structure Function And Bioinformatics 2001, 45: 313-317. PMID: 11746678, DOI: 10.1002/prot.1151.Peer-Reviewed Original ResearchConceptsTransmembrane dimerSingle transmembrane segmentBiological membrane fusionProtein-protein interactionsRight-handed structureInterhelical hydrogen bondsSequence-specific mannerTransmembrane segmentsDimerization motifThree-dimensional structureMutagenesis studiesMembrane fusionSuccessful structure predictionSide-chain atomsStructure predictionSpecific mannerKey playersComputational searchDimersSynaptobrevinMutagenesisComputational methodsAssociation thermodynamicsMotifGlycophorin
2000
A view of dynamics changes in the molten globule-native folding step by quasielastic neutron scattering11Edited by P. E. Wright
Bu Z, Neumann D, Lee S, Brown C, Engelman D, Han C. A view of dynamics changes in the molten globule-native folding step by quasielastic neutron scattering11Edited by P. E. Wright. Journal Of Molecular Biology 2000, 301: 525-536. PMID: 10926525, DOI: 10.1006/jmbi.2000.3978.Peer-Reviewed Original ResearchConceptsVibrational motionDiffusive motionPicosecond time scaleQuasielastic neutron scatteringSuch collective motionLength scalesPotential barrierQuasielastic scattering intensityCorrelation lengthJump motionShort length scalesBovine alpha-lactalbuminNeutron scatteringMolten globuleScattering intensityLong length scalesCollective motionMean-square amplitudesAtom clustersHigh-frequency motionsMolten globule stateNon-exchangeable protonsCluster sizeFrequency motionsProtein dynamicsHELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTION
Popot J, Engelman D. HELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTION. Annual Review Of Biochemistry 2000, 69: 881-922. PMID: 10966478, DOI: 10.1146/annurev.biochem.69.1.881.Peer-Reviewed Original Research
1999
Visual Arrestin Activity May Be Regulated by Self-association*
Schubert C, Hirsch J, Gurevich V, Engelman D, Sigler P, Fleming K. Visual Arrestin Activity May Be Regulated by Self-association*. Journal Of Biological Chemistry 1999, 274: 21186-21190. PMID: 10409673, DOI: 10.1074/jbc.274.30.21186.Peer-Reviewed Original Research
1998
Models for the Transmembrane Region of the Phospholamban Pentamer: Which Is Correct?a
ADAMS P, LEE A, BRÜNGER A, ENGELMAN D. Models for the Transmembrane Region of the Phospholamban Pentamer: Which Is Correct?a. Annals Of The New York Academy Of Sciences 1998, 853: 178-185. PMID: 10603945, DOI: 10.1111/j.1749-6632.1998.tb08265.x.Peer-Reviewed Original ResearchStructure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerization
MacKenzie K, Engelman D. Structure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerization. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 3583-3590. PMID: 9520409, PMCID: PMC19879, DOI: 10.1073/pnas.95.7.3583.Peer-Reviewed Original ResearchConceptsHelix-helix interactionsTransmembrane helix-helix associationTransmembrane helix-helix interactionsHelix-helix associationSingle-point mutantsStructure-based predictionTransmembrane domainMembrane proteinsDimer interfaceDimerization propensitySide-chain hydrophobicityDimer stabilityPoint mutationsSteric clashesMultiple mutationsMutationsSequence dependenceCompensatory effectFavorable van der Waals interactionsMutantsFoldingProteinInteractionDimerizationGlycophorin
1997
Are there dominant membrane protein families with a given number of helices?
Arkin I, Brünger A, Engelman D. Are there dominant membrane protein families with a given number of helices? Proteins Structure Function And Bioinformatics 1997, 28: 465-466. PMID: 9261863, DOI: 10.1002/(sici)1097-0134(199708)28:4<465::aid-prot1>3.0.co;2-9.Peer-Reviewed Original ResearchAnimalsMembrane ProteinsSTRUCTURAL PERSPECTIVES OF PHOSPHOLAMBAN, A HELICAL TRANSMEMBRANE PENTAMER
Arkin I, Adams P, Brünger A, Smith S, Engelman D. STRUCTURAL PERSPECTIVES OF PHOSPHOLAMBAN, A HELICAL TRANSMEMBRANE PENTAMER. Annual Review Of Biophysics 1997, 26: 157-179. PMID: 9241417, DOI: 10.1146/annurev.biophys.26.1.157.Peer-Reviewed Original ResearchDimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation
Burke C, Lemmon M, Coren B, Engelman D, Stern D. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene 1997, 14: 687-696. PMID: 9038376, DOI: 10.1038/sj.onc.1200873.Peer-Reviewed Original ResearchConceptsReceptor tyrosine kinasesTransmembrane domainEpidermal growth factor receptorSignal transductionWild-type domainSecond-site mutationsPosition 664Dimerization domainGrowth factor receptorTyrosine kinaseGlycophorin AFactor receptorValine substitutionDimerizationMutationsTransductionGlutamic acidDomainWeak dimerizationMutantsKinaseSignalingProteinEGFChimerasStructure of the Transmembrane Cysteine Residues in Phospholamban
Arkin I, Adams P, Brünger A, Aimoto S, Engelman D, Smith S. Structure of the Transmembrane Cysteine Residues in Phospholamban. The Journal Of Membrane Biology 1997, 155: 199-206. PMID: 9050443, DOI: 10.1007/s002329900172.Peer-Reviewed Original ResearchConceptsTransmembrane domainCysteine residuesSide chainsPentameric complexCysteine side chainsTransmembrane cysteine residuesLong α-helixIntrahelical hydrogen bondsBackbone carbonyl oxygenSelective ion channelsPolar side chainsElectrostatic potential fieldCarbonyl oxygenSulfhydryl groupsHydrogen bondsMembrane proteinsWild-type phospholambanVibrational spectraMutagenesis studiesTransmembrane peptidesAlanine substitutionsMolecular dynamicsReticulum membraneElectrostatic calculationsΑ-helixTwo EGF molecules contribute additively to stabilization of the EGFR dimer
Lemmon M, Bu Z, Ladbury J, Zhou M, Pinchasi D, Lax I, Engelman D, Schlessinger J. Two EGF molecules contribute additively to stabilization of the EGFR dimer. The EMBO Journal 1997, 16: 281-294. PMID: 9029149, PMCID: PMC1169635, DOI: 10.1093/emboj/16.2.281.Peer-Reviewed Original ResearchConceptsEpidermal growth factorReceptor dimerizationEGF moleculesPrecise molecular detailsHuman growth hormone receptorReceptor-receptor interactionsGrowth factorInterferon-gamma receptorEGFR dimersSignaling eventsMolecular detailsReceptor oligomerizationGrowth hormone receptorExtracellular domainEGFR familyCell surfaceMonomer bindsSubsequent associationDimerizationHormone receptorsTitration calorimetrySmall-angle X-ray scatteringBindingReceptorsMultivalent binding
1996
Coassembly of Synthetic Segments of Shaker K+ Channel within Phospholipid Membranes †
Peled-Zehavi H, Arkin I, Engelman D, Shai Y. Coassembly of Synthetic Segments of Shaker K+ Channel within Phospholipid Membranes †. Biochemistry 1996, 35: 6828-6838. PMID: 8639634, DOI: 10.1021/bi952988t.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsOligomerization of proteinsMembrane-embedded segmentsMembrane-mimetic environmentsAlpha-helical contentAlpha-helical structureLipid/peptide molar ratioS4 regionShaker potassium channelSecondary structure studiesResonance energy transfer measurementsPhospholipid membranesZwitterionic phospholipid vesiclesTransmembrane segmentsMembrane proteinsPhospholipid milieuMimetic environmentsSynthetic segmentsFirst repeatS4 sequenceEel sodium channelS4 segmentEnergy transfer measurementsSecondary structure
1994
A dimerization motif for transmembrane α–helices
Lemmon M, Treutlein H, Adams P, Brünger A, Engelman D. A dimerization motif for transmembrane α–helices. Nature Structural & Molecular Biology 1994, 1: 157-163. PMID: 7656033, DOI: 10.1038/nsb0394-157.Peer-Reviewed Original ResearchConceptsTransmembrane α-helicesHydrophobic transmembrane α-helicesSpecific helix-helix interactionsΑ-helixIntegral membrane proteinsHelix-helix interactionsHelix-helix interfaceDimerization motifSpecific dimerizationMembrane proteinsHelix associationFunctional analysisAmino acidsSuch motifsLipid bilayersMotifParticular motifsFoldingDimerizationSuch interactionsComplex membranesProteinOligomerizationVariety of systemsInteraction
1992
Intramembrane Helix-Helix Association in Oligomerization and Transmembrane Signaling
Bormann B, Engelman D. Intramembrane Helix-Helix Association in Oligomerization and Transmembrane Signaling. Annual Review Of Biophysics 1992, 21: 223-242. PMID: 1326354, DOI: 10.1146/annurev.bb.21.060192.001255.Peer-Reviewed Original ResearchConceptsProtein foldingTransmembrane regionReceptor proteinClose contact sitesSignal transductionQuaternary structureReceptor moleculesConformational changesHelical transmembrane regionsAllosteric conformational changeHelix-helix associationConformational change modelTertiary/quaternary structureTransmembrane helicesTransmembrane domainMechanism of insertionCytoplasmic domainTransmembrane signalingContact sitesPrimary structureSecondary structureProteinOligomerizationFoldingProteolytic fragments
1991
Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation.
Kataoka M, Head J, Persechini A, Kretsinger R, Engelman D. Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation. Biochemistry 1991, 30: 1188-92. PMID: 1991098, DOI: 10.1021/bi00219a004.Peer-Reviewed Original ResearchConceptsLinker regionCentral helixCalcium-dependent conformational changeWild-type proteinCentral linker regionSmall-angle X-rayAlpha-helical conformationGlu-84Calmodulin mutantsMutant formsGlu-83Wild typeMutantsNative proteinConformational changesCalmodulinProteinSer-81DeletionPresence of Ca2Binding of melittinSignificant size changesGlobular conformationRadius of gyrationHelix
1989
Melittin binding causes a large calcium-dependent conformational change in calmodulin.
Kataoka M, Head J, Seaton B, Engelman D. Melittin binding causes a large calcium-dependent conformational change in calmodulin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1989, 86: 6944-6948. PMID: 2780551, PMCID: PMC297967, DOI: 10.1073/pnas.86.18.6944.Peer-Reviewed Original ResearchConceptsConformational changesCalcium-dependent conformational changeDependent conformational changesCellular functionsTarget proteinsMelittin bindsCalmodulin functionCalmodulinSolution structureCalmodulin-melittin complexSmall-angle X-ray scatteringConformation changeAbsence of calciumCompetitive inhibitorOverall structureMelittin bindingTarget peptideMelittinPresence of calciumGlobular shapeCa2PeptidesX-ray scatteringProteinBinds
1987
Transmembrane topography of the nicotinic acetylcholine receptor delta subunit.
McCrea P, Popot J, Engelman D. Transmembrane topography of the nicotinic acetylcholine receptor delta subunit. The EMBO Journal 1987, 6: 3619-3626. PMID: 3428268, PMCID: PMC553829, DOI: 10.1002/j.1460-2075.1987.tb02693.x.Peer-Reviewed Original ResearchConceptsDisulfide bridgesAcetylcholine receptor delta subunitIntermolecular disulfide bridgesTransmembrane topographyTransmembrane segmentsTransmembrane crossingReceptor delta subunitCellular locationC-terminusN-terminusDelta subunitNicotinic acetylcholine receptorsSubunitsElectric organVesiclesPermeability barrierTorpedo marmorataVesicle systemAcetylcholine receptorsDiphtheria toxinAqueous spaceDimers