2006
2P168 Structural Basis of RNA-Dependent Recruitment of Glutamine to the Genetic Code(35. RNA world,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)
Oshikane H, Sheppard K, Nakamura Y, Fukai S, Feng L, Numata T, Ishitani R, Soll D, Nureki O. 2P168 Structural Basis of RNA-Dependent Recruitment of Glutamine to the Genetic Code(35. RNA world,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006). Seibutsu Butsuri 2006, 46: s337. DOI: 10.2142/biophys.46.s337_4.Peer-Reviewed Original Research
1998
The Terminal Adenosine of tRNAGln Mediates tRNA-Dependent Amino Acid Recognition by Glutaminyl-tRNA Synthetase †
Liu J, Ibba M, Hong K, Söll D. The Terminal Adenosine of tRNAGln Mediates tRNA-Dependent Amino Acid Recognition by Glutaminyl-tRNA Synthetase †. Biochemistry 1998, 37: 9836-9842. PMID: 9657697, DOI: 10.1021/bi980704+.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseAmino acid recognitionEscherichia coli glutaminyl-tRNA synthetaseSequence-specific interactionsDouble-mutant cycle analysisAmino acid glutamineMutant cycle analysisApparent affinityConservative replacementsNonconservative replacementGlutamine bindingKcat/KmTyr211Biochemical studiesNoncognate tRNAsTerminal adenosineSynthetaseGlutamineSpecific interactionsCycle analysisKmAsp66AffinityTRNADramatic decrease
1996
Glutaminyl‐tRNA synthetase: from genetics to molecular recognition
Ibba M, Hong K, Söll D. Glutaminyl‐tRNA synthetase: from genetics to molecular recognition. Genes To Cells 1996, 1: 421-427. PMID: 9078373, DOI: 10.1046/j.1365-2443.1996.d01-255.x.Peer-Reviewed Original ResearchConceptsEscherichia coli glutaminyl-tRNA synthetaseMajority of tRNAsCorrect amino acidGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesSequence-specific interactionsAmino acid recognitionEfficiency of aminoacylationGenetic codeTRNA selectionGlnRTRNAAmino acidsNoncognate tRNAsCellular viabilityStructural studiesMolecular recognitionSynthetasesAminoacylationComplex displaysGeneticsSynthetaseGlutamineMechanismViability
1995
Aminoacylation of transfer RNAs with 2-thiouridine derivatives in the wobble position of the anticodon
Rogers K, Crescenzo A, Söll D. Aminoacylation of transfer RNAs with 2-thiouridine derivatives in the wobble position of the anticodon. Biochimie 1995, 77: 66-74. PMID: 7541255, DOI: 10.1016/0300-9084(96)88106-5.Peer-Reviewed Original ResearchConceptsEvolution of specificityPost-transcriptional modificationsAnticodon of tRNAAminoacyl-tRNA synthetasesTranslational regulationTransfer RNAWobble positionWobble baseLysine tRNATRNAEscherichia coliAnticodonAminoacylationFirst positionSynthetasesRNAColiRegulationGlutamineModificationDiscoveryGlutamate
1990
Inaccuracy and the Recognition of †RNA
Rogers M, Soll D. Inaccuracy and the Recognition of †RNA. Progress In Nucleic Acid Research And Molecular Biology 1990, 39: 185-208. PMID: 2247608, DOI: 10.1016/s0079-6603(08)60627-3.Peer-Reviewed Original ResearchConceptsATP-dependent stepNoncognate aminoacyl-tRNAsGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesRecognition of tRNAAmber mutationGlnRAminoacyl-tRNAEditing mechanismTRNAMutantsMischargingCentral roleEnzymeSynthetasesMisaminoacylationSupF.SupFSynthetaseMutationsGlutamineMechanismSuppressionAssays
1988
Site-directed mutagenesis to fine-tune enzyme specificity
Uemura H, Rogers M, Swanson R, Watson L, Söll D. Site-directed mutagenesis to fine-tune enzyme specificity. Protein Engineering Design And Selection 1988, 2: 293-296. PMID: 3150543, DOI: 10.1093/protein/2.4.293.Peer-Reviewed Original ResearchConceptsOligonucleotide-directed mutagenesisEscherichia coli glutaminyl-tRNA synthetaseGenetic selectionGlutaminyl-tRNA synthetaseAmino acid replacementsSite-directed mutagenesisAcid replacementsEnzyme specificitySingle residueMutagenesisSide chainsRepulsive charge-charge interactionsSpecific recognitionCharge-charge interactionsNucleic acidsMutantsProteinSupFSynthetaseResiduesGlutamineSelectionProtein biosynthesis in organelles requires misaminoacylation of tRNA
Schön A, Kannangara C, Cough S, SÖll D. Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 1988, 331: 187-190. PMID: 3340166, DOI: 10.1038/331187a0.Peer-Reviewed Original ResearchConceptsProtein biosynthesisOrigin of organellesCrude chloroplast extractAnimal mitochondriaRNA involvementSpecific amidotransferaseTRNA speciesConversion of glutamateBarley chloroplastsChloroplast extractsProtein synthesisTRNAOrganellesSpeciesChloroplastsAminoacylation studiesBiosynthesisAmide donorGlutamineGlnCyanobacteriaAmidotransferaseMisaminoacylationMitochondriaOrganisms
1986
The nucleotide sequence of a wheat γ-gliadin genomic clone
Sugiyama T, Rafalski A, Söll D. The nucleotide sequence of a wheat γ-gliadin genomic clone. Plant Science 1986, 44: 205-209. DOI: 10.1016/0168-9452(86)90092-0.Peer-Reviewed Original Research
1984
Misaminoacylation by glutaminyl-tRNA synthetase: relaxed specificity in wild-type and mutant enzymes.
Hoben P, Uemura H, Yamao F, Cheung A, Swanson R, Sumner-Smith M, Söll D. Misaminoacylation by glutaminyl-tRNA synthetase: relaxed specificity in wild-type and mutant enzymes. The FASEB Journal 1984, 43: 2972-6. PMID: 6389180.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseMutant enzymesWild-type GlnRSAmino-terminal halfAmino acid sequenceAmino acid changesStructural gene mutationsTranslational controlTRNA speciesRelaxed specificityGene sequencesAcid sequenceGlnRRegulation mechanismAcid changesMonomeric polypeptideAmino acidsEnzymeTRNATyrSynthetaseMutationsGene mutationsGlutamineSequenceMisaminoacylation