2022
Measuring the tolerance of the genetic code to altered codon size
DeBenedictis EA, Söll D, Esvelt KM. Measuring the tolerance of the genetic code to altered codon size. ELife 2022, 11: e76941. PMID: 35293861, PMCID: PMC9094753, DOI: 10.7554/elife.76941.Peer-Reviewed Original ResearchConceptsFour-base codonsGenetic codeTRNA mutationsAminoacyl-tRNA synthetasesQuadruplet codonsSingle amino acidCodon translationTriplet codonsTRNA synthetasesSynthetic biologistsCodonTRNAAmino acidsChemical alphabetsMutationsMass spectrometrySynthetasesAnticodonToleranceSynthetic systemsBiologistsTranslationEscherichiaNascent
2013
UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota
Campbell JH, O’Donoghue P, Campbell AG, Schwientek P, Sczyrba A, Woyke T, Söll D, Podar M. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 5540-5545. PMID: 23509275, PMCID: PMC3619370, DOI: 10.1073/pnas.1303090110.Peer-Reviewed Original ResearchConceptsFrame TGA codonTGA codonGlycine codonHuman microbiotaSingle-cell genome sequencesSmall subunit rRNA sequencesComparative genomic analysisHorizontal gene transferUnique genetic codeGlycyl-tRNA synthetaseHuman Microbiome Project dataStrain-specific variationMost genesSuch taxaBisphosphate carboxylaseGenome sequenceGenetic codeGenomic analysisStriking diversityRRNA sequencesΒ-galactosidase activityGlycine residueStop codonCodonLacZ gene
2011
Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase
O’Donoghue P, Sheppard K, Nureki O, Söll D. Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 20485-20490. PMID: 22158897, PMCID: PMC3251134, DOI: 10.1073/pnas.1117294108.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acyl-tRNA SynthetasesBase SequenceCodonEscherichia coliEvolution, MolecularGenetic EngineeringKineticsMethanobacteriaceaeModels, MolecularMolecular ConformationMolecular Sequence DataNucleic Acid ConformationPhylogenyProtein Structure, SecondarySequence Homology, Amino AcidConceptsGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesGenetic code engineeringAmino acidsDomains of lifeMost aminoacyl-tRNA synthetasesGlutamyl-tRNA synthetaseCanonical amino acidsBacterial GlnRSTRNA specificityTRNA pairsParticular codonsEvolutionary precursorBiochemical characterizationStem loopGlnRAdditional codonsCAA codonCodonProtein synthesisCAG codonEscherichia coliSpecific enzymesCatalytic preferenceSynthetaseAn unusual tRNAThr derived from tRNAHis reassigns in yeast mitochondria the CUN codons to threonine
Su D, Lieberman A, Lang BF, Simonović M, Söll D, Ling J. An unusual tRNAThr derived from tRNAHis reassigns in yeast mitochondria the CUN codons to threonine. Nucleic Acids Research 2011, 39: 4866-4874. PMID: 21321019, PMCID: PMC3113583, DOI: 10.1093/nar/gkr073.Peer-Reviewed Original ResearchConceptsCUN codonsYeast mitochondriaGenetic codeAlloacceptor tRNA gene recruitmentComprehensive phylogenetic analysisStandard genetic codeThreonyl-tRNA synthetaseHistidyl-tRNA synthetaseGene recruitmentEvolutionary originPhylogenetic analysisRecoding eventBiochemical experimentsFirst nucleotideAnticodon loopMST1CodonFirst clear exampleYeastMitochondriaThreonineSynthetaseCandida albicansGenomeClear example
2008
Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality
Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O. Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality. Nature 2008, 457: 1163-1167. PMID: 19118381, PMCID: PMC2648862, DOI: 10.1038/nature07611.Peer-Reviewed Original ResearchConceptsAmino acidsMolecular basisLast universal common ancestorUniversal common ancestorUAG stop codonProteinogenic amino acidsCommon ancestorSuppressor tRNAStop codonDesulfitobacterium hafnienseStandard amino acidsTRNADistinct interactionsProteinPyrrolysinePylRSSelenocysteineAncestorCodonMachineryAcidVivoPairs
2001
Protein synthesis: Twenty three amino acids and counting
Ibba M, Stathopoulos C, Söll D. Protein synthesis: Twenty three amino acids and counting. Current Biology 2001, 11: r563-r565. PMID: 11509255, DOI: 10.1016/s0960-9822(01)00344-x.Peer-Reviewed Original Research
1997
Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation
Curnow A, Hong K, Yuan R, Kim S, Martins O, Winkler W, Henkin T, Söll D. Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 11819-11826. PMID: 9342321, PMCID: PMC23611, DOI: 10.1073/pnas.94.22.11819.Peer-Reviewed Original ResearchConceptsTranscriptional unitsGln-tRNAGlnGram-positive eubacteriaHeterotrimeric enzymeGlu-tRNAGlnTranslational apparatusHeterotrimeric proteinGlutamine codonB. subtilisAmidotransferaseSynthetase activityOnly pathwayEnzymeGlutamylEssential componentArchaeaTransamidationEubacteriaOperonCyanobacteriaGATCOrganellesCodonGenesGATA
1990
The accuracy of aminoacylation — ensuring the fidelity of the genetic code
Söll D. The accuracy of aminoacylation — ensuring the fidelity of the genetic code. Cellular And Molecular Life Sciences 1990, 46: 1089-1096. PMID: 2253707, DOI: 10.1007/bf01936918.Peer-Reviewed Original ResearchConceptsAccuracy of aminoacylationTransfer RNA speciesAminoacyl-tRNA synthetasesMessenger RNA codonRNA speciesProtein biosynthesisGenetic codeProtein interactionsParticular tRNATRNACorrect attachmentBiophysical techniquesRNA codonsAmino acidsSynthetasesSpecific recognitionProper interactionAnticodonBiosynthesisCodonAminoacylationNucleotidesSpeciesEnzymeIdentity element
1989
The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification
Schön A, Böck A, Ott G, Sprinzl M, Söll D. The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification. Nucleic Acids Research 1989, 17: 7159-7165. PMID: 2529478, PMCID: PMC334795, DOI: 10.1093/nar/17.18.7159.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceChromatography, High Pressure LiquidCodonCysteineEscherichia coliGenes, BacterialMolecular Sequence DataNucleic Acid ConformationRNA, Transfer, Amino Acid-SpecificRNA, Transfer, SerSeleniumSelenocysteineStructure-Activity RelationshipSuppression, Genetic
1985
Nucleotide sequences of two serine tRNAs with a GGA anticodon: the structure-function relationships in the serine family of E. coli tRNAs
Grosjean H, Nicoghosian K, Haumont E, Söll D, Cedergren R. Nucleotide sequences of two serine tRNAs with a GGA anticodon: the structure-function relationships in the serine family of E. coli tRNAs. Nucleic Acids Research 1985, 13: 5697-5706. PMID: 3898020, PMCID: PMC321899, DOI: 10.1093/nar/13.15.5697.Peer-Reviewed Original ResearchConceptsSerine tRNANucleotide sequenceRecent common ancestorE. coli tRNACodon-anticodon interactionStructure-function relationshipsEubacterial originUCU codonsEvolutionary analysisCommon ancestorD-loopTRNAAnticodon stemSerine familyAnticodonGenesE. coliMinor speciesCodonMajor speciesSpeciesSequenceTRNASerAncestorSerineConservation and variability of wheat α/β-gliadin genes
Sumner-Smith M, Rafalski J, Sugiyama T, Stoll M, Sōll D. Conservation and variability of wheat α/β-gliadin genes. Nucleic Acids Research 1985, 13: 3905-3916. PMID: 3839304, PMCID: PMC341285, DOI: 10.1093/nar/13.11.3905.Peer-Reviewed Original ResearchConceptsTypical eukaryotic promoterStorage protein genesEvolutionary relatednessGenomic clonesGliadin genesEukaryotic promotersGliadin familyProtein genePolyadenylation signalPolyglutamine stretchGene multiplicationClose homologyGlutamine codonGenesCertain mutationsCodonUnusual structureP-boxesIntronsHomologyPromoterPlantsProlineClonesRelatednessEscherichia coli supH suppressor: temperature-sensitive missense suppression caused by an anticodon change in tRNASer2
Thorbjarnardóttir S, Uemura H, Dingermann T, Rafnar T, Thorsteinsdóttir S, Söll D, Eggertsson G. Escherichia coli supH suppressor: temperature-sensitive missense suppression caused by an anticodon change in tRNASer2. Journal Of Bacteriology 1985, 161: 207-211. PMID: 3155715, PMCID: PMC214857, DOI: 10.1128/jb.161.1.207-211.1985.Peer-Reviewed Original ResearchConceptsWild-type tRNASingle nucleotide changeWild-type sequenceCAA anticodonMissense suppressorMissense suppressionCUA anticodonDNA sequencesLeucine codonMutant formsInsertion of serineNucleotide changesSuppressor geneAnticodonTRNASupHTRNASer2Anticodon changeCodonSuppressorSequenceTRNASerCloningGenesSerine
1984
The Schizosaccharomyces pombe sup3‐i suppressor recognizes ochre, but not amber codons in vitro and in vivo.
Hottinger H, Stadelmann B, Pearson D, Frendewey D, Kohli J, Söll D. The Schizosaccharomyces pombe sup3‐i suppressor recognizes ochre, but not amber codons in vitro and in vivo. The EMBO Journal 1984, 3: 423-428. PMID: 6370683, PMCID: PMC557361, DOI: 10.1002/j.1460-2075.1984.tb01823.x.Peer-Reviewed Original ResearchConceptsFission yeast Schizosaccharomyces pombeYeast Schizosaccharomyces pombeUGA termination codonVitro translation assaysReadthrough productS. pombeSchizosaccharomyces pombeNonsense mutantsTermination signalOchre suppressorUGA suppressionTranslation assaysAmber codonTermination codonGlobin mRNASup3PombeT substitutionCodonSuppressorPlasmid DNASchizosaccharomycesMutantsVivoAnticodon
1969
CYTOKININS: DISTRIBUTION IN TRANSFER RNA SPECIES OF Escherichia coli*
Armstrong D, Burrows W, Skoog F, Roy K, Söll D. CYTOKININS: DISTRIBUTION IN TRANSFER RNA SPECIES OF Escherichia coli*. Proceedings Of The National Academy Of Sciences Of The United States Of America 1969, 63: 834-841. PMID: 4899879, PMCID: PMC223528, DOI: 10.1073/pnas.63.3.834.Peer-Reviewed Original Research
1967
Studies on polynucleotides LXXV. Specificity of tRNA for codon recognition as studied by the ribosomal binding technique
Söll D, Cherayil J, Bock R. Studies on polynucleotides LXXV. Specificity of tRNA for codon recognition as studied by the ribosomal binding technique. Journal Of Molecular Biology 1967, 29: 97-112. PMID: 4861614, DOI: 10.1016/0022-2836(67)90183-0.Peer-Reviewed Original ResearchConceptsTransfer RNAAmino acidsE. coliIndividual amino acidsCodon recognitionMultiple codonsMultiple speciesRespective amino acidsWobble hypothesisYeast transfer RNAEscherichia coliCodonRNAColiYeastSpeciesBindingRecognition patternsTRNARibosomesThird letterStimulation of bindingTrinucleotideAcidInteresting differences
1966
Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique
Söll D, Jones D, Ohtsuka E, Faulkner R, Lohrmann R, Hayatsu H, Khorana H, Cherayil J, Hampel A, Bock R. Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique. Journal Of Molecular Biology 1966, 19: 556-573. PMID: 5338858, DOI: 10.1016/s0022-2836(66)80023-2.Peer-Reviewed Original Research