2021
Treatment scheduling effects on the evolution of drug resistance in heterogeneous cancer cell populations
Patwardhan GA, Marczyk M, Wali VB, Stern DF, Pusztai L, Hatzis C. Treatment scheduling effects on the evolution of drug resistance in heterogeneous cancer cell populations. Npj Breast Cancer 2021, 7: 60. PMID: 34040000, PMCID: PMC8154902, DOI: 10.1038/s41523-021-00270-4.Peer-Reviewed Original ResearchHeterogeneous cancer cell populationsCancer cell populationsTriple-negative breast cancerSingle-cell RNA sequencingCell populationsFitness advantageRNA sequencingMDA-MB-231 TNBC cellsDrug resistanceMechanisms of resistanceVitro screening assaysClonal dynamicsTNBC cellsScreening assaysResistant clonesPatterns of resistanceConcomitant treatmentTherapy combinationsBreast cancerClinical studiesTreatment doseTreatment scheduleBarcodesSequencingTreatment
2006
Formation of Neu/ErbB2-induced mammary tumors is unaffected by loss of ErbB4
Jackson-Fisher AJ, Bellinger G, Shum E, Duong JK, Perkins AS, Gassmann M, Muller W, Kent Lloyd KC, Stern DF. Formation of Neu/ErbB2-induced mammary tumors is unaffected by loss of ErbB4. Oncogene 2006, 25: 5664-5672. PMID: 16652155, DOI: 10.1038/sj.onc.1209574.Peer-Reviewed Original ResearchConceptsClinical studiesMammary tumorsMammary glandSimilar latency periodHistology of tumorsLoss of ERBB4Epidermal growth factor receptorTumor suppressorGrowth factor receptorLung metastasesBreast cancerErbb4 allelesMMTV-NeuLatency periodNull miceTumorsReceptor tyrosine kinasesFactor receptorErbB4ErbB familyCancerMiceTyrosine kinaseTissue culture analysisGland